Tìm tất cả các giá trị thực của tham số m để phương trình 3 x 2 − ( m + 2 ) x + m − 1 = 0 có một nghiệm gấp đôi nghiệm còn lại
A. m ∈ 5 2 ; 7
B. m ∈ − 2 ; − 1 2
C. m ∈ 0 ; 2 5
D. m ∈ − 3 4 ; 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có hai nghiệm phân biệt ⇔ ∆ ' > 0
⇔ m 2 - 7 m + 16 > 0 ⇔ m − 7 2 2 + 15 4 > 0 , ∀ m ∈ R
Theo định lí Viet, ta có:
x 1 . x 2 = 3 m − 5 3 ; x 1 + x 2 = 2 ( m + 1 ) 3 x 1 = 3 x 2 ⇔ x 1 = m + 1 2 , x 2 = m + 1 6 x 1 . x 2 = 3 m − 5 3
⇒ m + 1 2 12 = 3 m − 5 3 ⇔ m 2 − 10 m + 21 = 0 ⇔ m = 3 m = 7
Đáp án cần chọn là: C
Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)
\(\Rightarrow-t^2+t-3+m=0\)
\(\Leftrightarrow t^2-t+3=m\)
Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)
\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)
\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)
Ta có pt: \(mx^2-3\left(m+1\right)x+m^2-13m-4=0\)
Do pt có nghiệm là x = -2 nên thay vào pt ta có:
\(m\cdot\left(-2\right)^2-3\left(m+1\right)\cdot-2+m^2-13m-4=0\)
\(\Leftrightarrow4m+6\left(m+1\right)+m^2-13m-4=0\)
\(\Leftrightarrow6m+6+m^2-9m-4=0\)
\(\Leftrightarrow m^2-3m+2=0\)
\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{3+\sqrt{1}}{2}=2\\m_2=\dfrac{3-\sqrt{1}}{2}=1\end{matrix}\right.\)
Nếu m = 1 thì pt là:
\(x^2-3\left(1+1\right)x+1^2-13\cdot1-4=0\)
\(\Leftrightarrow x^2-6x-16=0\)
Theo vi-et: \(x_1+x_2=-\dfrac{-6}{1}\Rightarrow x_2=6-x_2=8\)
Nếu m = 2 thì pt là:
\(2x^2-3\cdot\left(2+1\right)x+2^2-13\cdot2-4=0\)
\(\Leftrightarrow2x^2-9x-26=0\)
Theo vi-et: \(x_1+x_2=-\dfrac{-9}{2}\Leftrightarrow x_2=\dfrac{9}{2}+2=\dfrac{13}{2}\)
\(x-4\sqrt{x+3}+m=0\)
\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)
\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)
\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)
\(\Rightarrow f\left(0\right)=-3\)
\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)
\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)
\(t^2-4t-3+m=0\Leftrightarrow t^2-4t-3=-m\)
\(có-2nghiệm-pb-trên[0;\text{+∞})\)
\(xét-bảng-biến-thiên-củaf\left(t\right)=t^2-4t-3,trên[0;\text{+∞})\)
dựa vào bảng biến thiên ta thấy số nghiệm của phương trình f(t)
là số giao điểm của đường thẳng y=-m
\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Phương trình có hai nghiệm phân biệt ⇔ ∆ > 0
⇔ m 2 - 8 m + 16 = 0 m - 4 2 > 0 ⇔ m ≠ 4 *
Theo định lí Viet, ta có:
x 1 . x 2 = m − 1 3 ; x 1 + x 2 = m + 2 3 x 1 = 2 x 2 ⇔ x 1 = 2 9 ( m + 2 ) , x 2 = 1 9 ( m + 2 ) x 1 . x 2 = m − 1 3
⇒ 2 81 ( m + 2 ) 2 = m − 1 3 ⇔ 2 m 2 − 19 m + 35 = 0 ⇔ m = 5 2 m = 7 (thỏa mãn (*))
Đáp án cần chọn là: A