K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Gọi x 1 ,   x 2 là nghiệm của phương trình x 2 - 2 m x + 1 = 0 . Khi đó  x 1 + x 2 = 2 m x 1 . x 2 = 1

Gọi  x 3 ,   x 4  là nghiệm của phương trình  x 2 - 2 m x + 1 = 0 . Khi đó  x 3 + x 4 = 2 x 3 . x 4 = m

Ta có:  x 1 = 1 x 3 x 2 = 1 x 4 ⇒ x 1 + x 2 = 1 x 3 + 1 x 4 x 1 . x 2 = 1 x 3 . x 4

⇒ x 1 + x 2 = x 3 + x 4 x 3 . x 4 x 1 . x 2 = 1 x 3 . x 4 ⇔ 2 m = 2 m 1 = 1 m ⇔ m = 1

Đáp án cần chọn là: C

16 tháng 3 2022

bạn có thể giúp mk giải theo kiểu tự luận đc ko ạ

 

13 tháng 6 2018

Đáp án B.

Với x ∈ 5 2 ; 4  thì phương trình tương đương với:

m - 1 log 2 2 x - 2 + m - 5 log 2 x - 2 + m - 1 = 0             (1)

Đặt log 2 ( x - 2 ) = t . Với  x ∈ 5 2 ; 4  thì t ∈ - 1 ; 1 . Phương trình (1) trở thành:

( m - 1 ) t 2 + ( m - 5 ) t + m - 1 = 0 ⇔ m ( t 2 + t + 1 ) = t 2 + 5 t + 1 ⇔ m = t 2 + 5 t + 1 t 2 + t + 1  (2)

Xét hàm số  f ( t ) = t 2 + 5 t + 1 t 2 + t + 1 = 1 + 4 t t 2 + t + 1  trên đoạn  - 1 ; 1  .

Đạo hàm f ' ( t ) = - 4 ( t 2 - 1 ) t 2 + t + 1 ≥ 0 ,   ∀ t ∈ - 1 ; 1 ;   f ' ( t ) = 0 ⇔ t = ± 1 . Khi đó hàm số f ( t )  đồng biến trên  - 1 ; 1 . Suy ra min - 1 ; 1 f ( t ) = f ( - 1 ) = - 3 ;   max - 1 ; 1 f ( t ) = f ( 1 ) = 7 3 .

Phương trình (2) có nghiệm ⇔  Đường thẳng y - m  cắt đồ thị hàm số  f ( t ) ⇔ - 3 ≤ m ≤ 7 3 . Vậy S = - 3 ; 7 3 → a = - 3 ,   b = 7 3 → a + b = - 3 + 7 3 = - 2 3 .

10 tháng 5 2017

23 tháng 2 2019

21 tháng 5 2020

ư365jn5yb

30 tháng 10 2017

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra