Cho hệ phương trình: m x − y = 2 3 x + m y = 5 ( m ≠ 0 ) . Giá trị của m để hệ phương trình có nghiệm duy nhất thỏa mãn x + y < 1 là:
A. m > 7 + 33 2 m < 7 − 33 2
B. m > − 7 + 33 2 m < − 7 − 33 2
C. − 7 − 33 2 < m < − 7 + 33 2
D. 7 − 33 2 < m < 7 + 33 2
Ta có: D = m − 1 3 m = m 2 + 3 ; D x = 2 − 1 5 m = 2 m + 5 ; D y = m 2 3 5 = 5 m − 6
Vì m 2 + 3 ≠ 0 , ∀ m nên hệ phương trình luôn có nghiệm duy nhất x = D x D = 2 m + 5 m 2 + 3 y = D y D = 5 m − 6 m 2 + 3
Theo giả thiết, ta có:
x + y < 1 ⇔ 2 m + 5 m 2 + 3 + 5 m − 6 m 2 + 3 < 1 ⇔ 7 m − 1 m 2 + 3 < 1
⇔ 7 m − 1 < m 2 + 3 ⇔ m 2 − 7 m + 4 > 0 ⇔ m > 7 + 33 2 m < 7 − 33 2
Đáp án cần chọn là: A