Cho tứ diện S.ABCD ; gọi D; E; F lần lượt là trung điểm của AB ; BC; SA. Gọi H là giao điểm của AE và CD. Gọi giao tuyến của 2 mặt phẳng (SCD) và (BFC) là CI. SH và CI cắt nhau tại O. Tính tỉ số O H O S
A. 2 3
B. 1 2
C. 1 3
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trọng tâm tam giác ABC. Vì S.ABC là tứ diện đều cạnh a nên S H ⊥ A B C hay S H ⊥ A B C D v à S A = S B = S C = A C = B C = a
Gọi O là giao điểm hai đường chéo hình thoi ABCD thì B H = 2 3 B O
Vì ABC đều có BO là trung tuyến nên \ B O = a 3 2
Xét tam giác SBH vuông tại H ta có
Diện tích hình thoi ABCD là
Thể tích khối chóp S.ABCD là
.
Chọn B.
Đán án C
Gọi G là trung điểm của EF thì G chính là tâm mặt cầu ngoại tiếp tứ diện.
Ta có C E 2 = C B 2 + C A 2 2 − A B 2 4 = 6 2 + 6 2 2 − 2 2 4 = 35 ,
E F 2 = C E 2 − C F 2 = 35 − 2 2 = 31
⇒ G F = 31 2 ⇒ R = G C = G F 2 + C F 2 = 31 4 + 4 = 47 2 .
Vậy diện tích mặt cầu cần tính là:
S = 4 π R 2 = 4 π . 47 4 = 47 π .
Chọn A.
Mặt phẳng (SAC) chia khối chóp S.ABCD thành 2 khối tứ diện là S.ABC và S.ACD.
Chọn C
Mặt phẳng (SAC) chia khối chóp S.ABCD thành 2 khối tứ diện là : SABC,SACD
Chọn đáp án D
Hình chóp S.ABCD có 5 mặt nên thiết diện của hình chóp có tối đa 5 cạnh. Vậy thiết diện không thể là lục giác