Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Số đo của góc giữa đường thẳng SA và (ABC) bằng
A. 45⁰.
B. 60⁰.
C. 30⁰.
D. 75⁰.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Từ (1), (2) => HK là đoạn vuông góc chung của SA và BC
Tam giác SHA vuông tại A có đường cao HK nên 1 HK 2 = 1 SH 2 + 1 AH 2 = 4 3 a 2 + 4 a 2 = 16 3 a 2 .
⇒ HK = 3 a 4 .
Đáp án D
Góc giữa cạnh SA và đáy là S A F ^ ,
Vì tam giác ABC và SBC là tam giác đều cạnh a nên ta có
Vậy
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.