K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

29 tháng 1 2018

Đáp án A

Gọi φ  là góc giữa SC và (SAD), N là giao điểm của HM và AD, K là hình chiếu vuông góc của H trên SN, I là giao điểm của HC với AD. Gọi E là điểm đối xứng với I qua K.

Ta có  M B = 1 4 B C = a 2 , H B = a , H B M ^ = B A D ^ = 60 °

⇒ H M = H B 2 + M B 2 − 2 H B . M B . c o s H B M ^

⇒ H M = a 2 + a 2 4 − 2 a . a 2 . cos 60 ° = 3 2 a

⇒ H M 2 + M B 2 = 3 2 a 2 + a 2 2 = a 2 = H B 2

  ⇒ Δ H M B vuông tại M

  ⇒ H M ⊥ M B hay M N ⊥ B C .

Vì  S H ⊥ A D do  S H ⊥ A B C D M N ⊥ A D do  M N ⊥ B C ⇒ A D ⊥ S M N ⇒ A D ⊥ H K , mà H K ⊥ S N  nên H K ⊥ S A D . Lại có HK là đường trung bình của Δ I C E  nên H K // C E . Suy ra C E ⊥ S A D  tại E và SE là hình chiếu của SC trên mặt phẳng (SAD).

Vậy φ = S C , S A D ^ = S C , S E ^ = C S E ^ .

Đặt  S H = x , x > 0   . Do Δ S H N  vuông tại H có HK là đường cao nên ta có

1 H K 2 = 1 S H 2 + 1 H N 2 ⇒ H K = S H . H N S H 2 + H N 2 = 3 a x 4 x 2 + 3 a 2 ⇒ C E = 2 H K = 2 3 a x 4 x 2 + 3 a 2

Do Δ S H C  vuông tại H nên

S C = S H 2 + H C 2 = S H 2 + H M 2 + M C 2 = x 2 + 3 2 a 2 + 5 a 2 2 = x 2 + 7 a 2

  Δ S E C vuông tại E nên  sin φ = sin C S E ^ = E C S C = 2 3 a x 4 x 2 + 3 a 2 x 2 + 7 a 2

⇒ sin φ = 2 3 a x 4 x 4 + 21 a 4 + 31 a 2 x 2 ≤ 2 3 a x 4 21 a 2 x 2 + 31 a 2 x 2 = 2 3 4 21 + 31

Dấu “=” xảy ra khi và chỉ khi 4 x 4 = 21 a 4 ⇔ x 4 = 21 4 a 4 ⇔ x = 21 4 4 a .

Vậy góc φ  đạt lớn nhất khi   sin φ đạt lớn nhất, khi đó  S H = 21 4 4 a

2 tháng 11 2018

Vuông tròn tam giác tròn tròn vuông tam giác vuông tam giác tròn

24 tháng 2 2017

20 tháng 12 2019

Giải bài 7 trang 126 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 7 trang 126 sgk Hình học 11 | Để học tốt Toán 11

Gọi K là trung điểm của AD ta có CK = AB = AD/2 nên tam giác ACD vuông tại C

Ta có:

Giải bài 7 trang 126 sgk Hình học 11 | Để học tốt Toán 11

b) Trong mặt phẳng (SAC) vẽ AC’ ⊥ SC và trong mặt phẳng (SAD) vẽ AD’ ⊥ SD

Ta có AC’⊥ CD (vì CD ⊥ (SAC))

Và AC’ ⊥ SC nên suy ra AC’ ⊥ (SCD) ⇒ AC’ ⊥ SD

Ta lại có AB ⊥ AD và AB ⊥ SA nên AB ⊥ (SAD) ⇒ AB ⊥ SD

Ba đường thẳng AD’, AC’ và AB cùng đi qua điểm A và vuông góc với SD nên cùng nằm trong mặt phẳng (α) qua A và vuông góc với SD

c) Ta có C’D’ là giao tuyến của (α) với mặt phẳng (SCD). Do đó khi S di động trên tia Ax thì C’D’ luôn luôn đi qua một điểm cố định là giao điểm của AB và CD

AB ⊂ (α), CD ⊂ (SCD) ⇒ I ∈ (α) ∩ (SCD) = C’D’

1 tháng 2 2017

Chọn A

Phương pháp tọa độ (cách này tính toán khá phức tạp nên chỉ nêu ra để học sinh thấy không phải bài toán nào cũng dùng phương pháp tọa độ cũng nhanh nhất)

Ta chọn hệ trục tọa độ như hình vẽ và chọn a = 1.

Ta có:

5 tháng 5 2017

Đáp án A

28 tháng 9 2019

 

 

 

 

 

Ta có

A H = 1 2 A B = a 2 ; S A = A B = a S H = H C = B H 2 + B C 2 = a 5 2  

Do A H 2 + S A 2 = 5 a 2 4 = S H 2  nên S A ⊥ A B

Do đó S A ⊥ A B C D  nên S C , A B C D ^ = S C A ^  

Trong tam giác vuông SAC có tan α = tan S C A ^ = S A A C = 1 2

Đáp án A

NV
29 tháng 1

Gọi E là điểm đối xứng M qua A

\(\Rightarrow ANDE\) là hình bình hành (cặp cạnh đối AE và DN song song và bằng nhau)

\(\Rightarrow AN||DE\Rightarrow\) góc giữa AN và SD bằng góc giữa SD và DE

Do tam giác ABD đều \(\Rightarrow MD\perp AB\) \(\Rightarrow\Delta MDE\) vuông tại M

Do tam giác SAB đều \(\Rightarrow SM\perp AB\)

Mà \(\left(SAB\right)\perp\left(ABCD\right)\Rightarrow SM\perp\left(ABCD\right)\)

\(\Rightarrow\) Các tam giác SMD, SME vuông tại M

\(SM=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác SAB đều)

\(MD=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác ABD đều)

\(ME=2AM=AB=a\)

Pitago:

\(SD=\sqrt{SM^2+MD^2}=\dfrac{a\sqrt{6}}{2}\)

\(SE=\sqrt{SM^2+ME^2}=\dfrac{a\sqrt{7}}{2}\)

\(ED=\sqrt{MD^2+ME^2}=\dfrac{a\sqrt{7}}{2}\)

\(\Rightarrow cos\widehat{SDE}=\dfrac{SD^2+ED^2-SE^2}{2SD.ED}=\dfrac{\sqrt{42}}{14}\)

NV
29 tháng 1

loading...