Nếu a ⋮ 2 ; b ⋮ 2 và c ⋮ 2 thì tổng a − b + c chia hết cho2 không?
A. Có
B. Không
C. Không xác định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc\;\cos A\)
\( \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\;\cos A\)(1)
a) Nếu góc A nhọn thì \(\cos A > 0\)
Từ (1), suy ra \({b^2} + {c^2} > {a^2}\)
b) Nếu góc A tù thì \(\cos A < 0\)
Từ (1), suy ra \({b^2} + {c^2} < {a^2}\)
c) Nếu góc A vuông thì \(\cos A = 0\)
Từ (1), suy ra \({b^2} + {c^2} = {a^2}\)
Bạn Tuyết Nhi Melody đã khẳng định thì phải giải thích nhé!!
a) Nếu a<0 thì a2>0
=> Đúng
Vì: bình phương một số bé hơn không luôn bằng bình phương số đối của nó (bình phương một số dương) và sẽ luôn lớn hơn không.
b) Nếu a2>0 thì a>0
=> Sai
Vì bình phương một số thực khác 0 thì sẽ luôn dương (kể cả số thực âm), vậy kết luận này chưa chính xác. (a>0; a<0)
c) Nếu a<0 thì a2>a
=> Sai
Vì: a<0 thì a2 sẽ là bình phương số đối của nó (bình phương 1 số dương) và luôn lớn hơn 0. (Số lớn hơn 0 sẽ lớn hơn số nhỏ hơn 0).
d) Nếu a2>a thì a>0
=> Sai.
Vì: Nó đúng trong mọi trường hợp trừ số 1. Vì khi 12=1 nó không lớn hơn 1 được!
e) Nếu a2>a thì a<0
=> Sai.
Vì: Bình phương một số âm chính là bình phương số đối của nó và kết quả luôn dương nên lớn hơn số đó. Nhưng còn các số dương (trừ số 1) thì bình phương lên cũng lớn hơn chính nó. Nên khẳng định này nếu đúng phải là (a>0, a<0, a khác 1)
f) Nếu a2>b2 thì a>b
=> Sai
Vì: Nó không đúng với mọi trường hợp. Nếu số a là một số dương nhỏ hơn số đối của số âm b (a>b; a<-b) thì bình phương của số a (a2) sẽ bé hơn bình phương của số b (b2)
CHÚC EM HỌC TỐT!!!
Biết A - B = 156
a, Hiệu hai số khi A tăng thêm 4 đơn vị, B giữ nguyên là :
156 + 4 = 160
b, Hiệu 2 số nếu A bớt đi 6 đơn vị, B giữ nguyên là :
156 - 6 = 150
c,Hiệu 2 số nếu A giữ nguyên, B tăng 4 đơn vị là :
156 - 4 = 152
d,Hiệu 2 số nếu A giữ nguyên, B bớt 6 đơn vị là :
156 - 6 = 150
e, Hiệu 2 số nếu A tăng thêm 11 đơn vị và B tăng thêm 11 đơn vị thì hiệu vẫn ko đổi
Nếu bn muốn giải thích thì mk sẽ giải thích sau, h k mk đã
a) Nếu a = 2 và b = 1 thì a – b = 2 – 1 = 1.
b) Nếu m = 6 và n = 3 thì: m + n = 6 + 3 = 9.
m – n = 6 -3 = 3.
m × n = 6× 3 = 18.
m : n = 6 : 3 = 2.
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
ta có: \(\frac{a^2+c^2}{b^2+a^2}\)do \(a^2=bc\)
=>\(\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
vậy \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
\(\text{Ta có : }\frac{a^2+c^2}{b^2+a^2}\text{ do }a^2=bc\)
\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
\(\text{Vậy }\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
Sử dụng tính đơn điệu của hàm mũ: hàm \(y=a^x\) nghịch biến khi \(0< a< 1\) và đồng biến khi \(a>1\)
\(a^2=b^2+c^2\Rightarrow\left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
\(\Rightarrow\left\{{}\begin{matrix}0< \dfrac{b}{a}< 1\\0< \dfrac{c}{a}< 1\end{matrix}\right.\) nên các hàm \(\left(\dfrac{b}{a}\right)^x\) và \(\left(\dfrac{c}{a}\right)^x\) đều nghịch biến
Xét: \(\dfrac{b^m+c^m}{a^m}=\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m\) \(\)
- Khi \(m>2\Rightarrow\left(\dfrac{b}{a}\right)^m< \left(\dfrac{b}{a}\right)^2\) và \(\left(\dfrac{c}{a}\right)^m< \left(\dfrac{c}{a}\right)^2\)
\(\Rightarrow\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m< \left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
Hay \(\dfrac{b^m+c^m}{a^m}< 1\) \(\Rightarrow a^m>b^m+c^m\)
Câu b c/m tương tự, \(m< 2\) thì \(\left(\dfrac{b}{a}\right)^m>\left(\dfrac{b}{a}\right)^2...\)
Chọn B.
Ta có: a ⋮ 2 ; b ⋮ 2 ⇒ ( a − b ) ⋮ 2
Mà c ⋮ 2 nên ( a − b + c ) ⋮ 2 .