K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

Đặt BC=a; AC=b; AB=c

Từ M dựng các đường vuông góc với BC; AC; AB cắt lần lượt tại D;E;F

Đặt MD=x; ME=y; MF=z

\(S_{ABC}=S_{MBC}+S_{MAC}+S_{MAB}=\frac{ax+by+cz}{2}\) áp dụng bđt cosi

\(\frac{ax+by+cz}{3}\ge\sqrt[3]{ax.by.cx}\Rightarrow\frac{ax+by+cz}{2}\ge\frac{3\sqrt[3]{ax.by.cz}}{2}\)

\(\Rightarrow S_{ABC}\ge\frac{3.\sqrt[3]{ax.by.cz}}{2}=\frac{3\sqrt[3]{abc}.\sqrt[3]{xyz}}{2}\Rightarrow\sqrt[3]{xyz}\le\frac{2.S_{ABC}}{3.\sqrt[3]{abc}}\)

\(\Rightarrow xyz\le\frac{8.S^3_{ABC}}{27abc}\) xyz lơn nhất khi \(xyz=\frac{8.S^3_{ABC}}{27abc}=const\)

Dấu = xảy ra khi ax=by=cz \(\Rightarrow S_{MBC}=S_{MAC}=S_{MAB}\)

Nối AM cắt BC tại K, Từ B và C dựng đường vuông góc với AK cắt AK lần lượt tại P và Q

Xét tg MAB và tg MAC có chung đáy AM và S(MAB)=S(MAC) => hai đường cao tương ứng BP=CQ

Xét tg vuông BKP và tg vuông CKQ có 

^PBK = ^QCK (góc so le trong)

BP=CQ (cmt)

=> tg BKP = tg CKQ (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=CK => AM là trung tuyến của tg ABC

C/m tương tự ta cũng có BM, CM là trung tuyến của tg ABC

=> M là trọng tâm của tg ABC

9 tháng 4 2016

a) giao điểm của các đường phân giác 

b) M≡T (điểm T được gọi là điểm Toricenli của tam giác ABC).

hoặc  M≡B

9 tháng 4 2016

nếu bạn nói M trùng B thì phải nói rõ điều kiện đặt cho 3 cạnh của tam giác

NV
10 tháng 4 2022

Bài toán này liên qua đến các đường đối trung và điểm Lemoine của tam giác, hy vọng em đã học nó rồi (nếu chứng minh tất cả từ đầu thì sẽ rất tốn thời gian)

Giả sử M, N, P lần lượt thuộc BC, CA, AB, đặt \(BC=a;CA=b;AB=c\)

Gọi G là trọng tâm MNP; H, I, K lần lượt là hình chiếu của G lên BC, CA, AB

Ta có:

\(MN^2+NP^2+MP^2=3\left(GM^2+GN^2+GP^2\right)\ge3\left(GH^2+GI^2+GK^2\right)\)

Lại có:

\(S_{GBC}+S_{GCA}+S_{GAB}=\dfrac{1}{2}\left(GH.a+GI.b+GK.c\right)=S_{ABC}\)

\(\Rightarrow4S^2=\left(GH.a+GI.b+GK.c\right)^2\le\left(GH^2+GI^2+GK^2\right)\left(a^2+b^2+c^2\right)\)

\(\Rightarrow GH^2+GI^2+GK^2\ge\dfrac{4S^2}{a^2+b^2+c^2}\)

\(\Rightarrow MN^2+NP^2+MP^2\ge\dfrac{12S^2}{a^2+b^2+c^2}\)

Dấu "=" xảy ra khi và chỉ khi \(\dfrac{GH}{a}=\dfrac{GI}{b}=\dfrac{GK}{c}\) hay G là điểm Lemoine của tam giác ABC

\(\Rightarrow M;N;P\) là hình chiếu vuông góc của điểm Lemoine lên BC, CA, AB.

10 tháng 4 2022

Con cảm ơn thầy ạ.