Chứng minh: 3 + 2x - 4y + 6xy - 10x^2 +5y^2 > 0 với mọi giá trị x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)
Thay x = 15 vào bt A ta có
A = 9 . 15 = 135
b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)
Thay x = -1/5 ; y = - 1/2 vào bt B ta có
\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)
\(=9x^2y^2-xy^3-8x^3\)
Thay x = 1/2 ; y = 2 vào bt C ta có
\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)
d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)
\(=12x^2+12x-3\)
\(\left|x\right|=2\Rightarrow x=\pm2\)
Thay x = 2 vào bt D có
\(D=12.4+12.2-3=69\)
Thay x = - 2 vào bt D ta có
\(D=12.4-12.2-3=21\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(A=2x^2-20x+7=2\left(x^2-10x+25\right)-43=2\left(x-5\right)^2-43\ge-43\left(\forall x\right)\)
=> Chưa thể khẳng định A dương
\(B=9x^2-6xy+2y^2+1\)
\(B=\left(9x^2-6xy+y^2\right)+y^2+1\)
\(B=\left(3x-y\right)^2+y^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
\(C=x^2-2x+y^2+4y+6\)
\(C=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(C=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
\(D=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
Lời giải:
a.
$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$
$=9x=9.15=135$
b.
$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$
$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$
c.
$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$
$=-8x^3+9x^2y^2-xy^3$
$=(-2x)^3+(3xy)^2-xy^3$
$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$
\(a.\)
\(A=9x^2-6xy+2y^2+1\)
\(A=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\)
\(A=\left(3x-y\right)^2+\left(y^2+1\right)\ge0\)
\(b.\)
\(B=x^2-2x+y^2+4y+6\)
\(B=x^2-2x+1+y^2+4y+4+1\)
\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
\(c.\)
\(C=x^2-2x+2\)
\(C=x^2-2x+1+1\)
\(C=\left(x-1\right)^2+1\ge1\)
a) A=9x2-6xy+2y2+1
A=(3x)2-2.3x.y+y2+y2+1
A=(3x-y)2+(y2+1)≥0
Câu b, c tương tự câu a
= (x2-x+1)(x2+3x+10)+10 = P
x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0
x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0
vây P>0