Cho hình lăng trụ đứng ABC. A’B’C’ có đáy tam giác ABC vuông tại A, AB = 6 cm, AC = 8 cm, AA’ = 12 cm. Diện tích toàn phần của hình lăng trụ đó bằng
A. 288 c m 2
B. 360 c m 2
C. 456 c m 2
D. 336 c m 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích của hình lăng trụ đứng là:
\(5\times13\times10=650\left(cm^3\right)\)
Diện tích xung quanh của hình lăng trụ đứng là:
\(2\times10\times\left(13+5\right)=360\left(m^3\right)\)
Diện tích hai đáy của hình lăng trụ đứng là:
\(2\times5\times13=130\left(cm^3\right)\)
Diện tích toàn phần của hình lăng trụ đứng là:
\(360+130=490\left(cm^3\right)\)
BC=căn 1,5^2+2^2=2,5cm
Sxq=(1,5+2+2,5)*4,5=27cm2
Stp=27+2*1/2*2*1,5=30cm2
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15$ (cm)
$CC'=\sqrt{BC'^2-BC^2}=\sqrt{17^2-15^2}=8$ (cm)
Diện tích xung quanh hình lăng trụ là:
$(9+12+15).8=288$ (cm2)
Diện tích toàn phần là:
S t p = 288 + 2 . 24 = 336 c m 2
Đáp án cần chọn là D