Biết a + b = – 5 v à a . b = 4 . Giá trị của biểu thức a 3 + b 3 là:
A. –20
B. –65
C. 65
D. 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a x 6 = 3 x 6 = 18
b, a + b = 4 + 2 = 6
c, b + a = 2 + 4 = 6
d, a - b = 8 - 5 = 3
e, m x n = 5 x 9 = 45
tính giá trị biểu thức P = A x 100 + B x 10 + C
a ] A = 5 ,B = 7 và C = 8
=> P = 5 x 100 + 7 x 10 + 8 =578
b ] A = 4 ,B = 0 Và c = 3
=> P = 4 x 100 + 0 x 10 + 3 =403
c ] A = 1 ,B = 2 VÀ C = 0
=> P = 1 x 100 + 2 x 10 + 0 = 120
mk làm hơi ngăn gọi bn thông cảm nha
a)P=5 x 100 + 7 x 10 + 8=578
b)P=4 x 100 + 0 x 10 + 3=403
c) P=1 x 100 + 2 x 10 + 0=120
Câu 5:
\(D\left(2\right)=21a+9b-6a-4b\)
\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)
\(D\left(2\right)=15a+5b\)
Mà: \(3a+b=18\Rightarrow b=18-3b\)
\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)
\(D\left(2\right)=15a+90-15a\)
\(D\left(2\right)=90\)
Vậy: ...
a) Giá trị của biểu thức 370 + a với a = 20 là 390.
b) Giá trị của biểu thức 860 – b với b = 500 là 360.
c) Giá trị của biểu thức 200 + c với c = 4 là 204.
d) Giá trị của biểu thức 600 – x với x = 300 là 300.
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
Chọn B