K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

\(A=\sqrt{\frac{x+10}{x+2}}=\sqrt{1+\frac{8}{x+2}}\le\sqrt{1+\frac{8}{2}}=\sqrt{5}\)

3 tháng 7 2018

a) ĐK:  \(x\ge0;x\ne1\)

\(C=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-x\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\)

22 tháng 3 2020

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b, Ta có : \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)

=> \(A=\left(\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{x\sqrt{x}-1}\right)\left(\frac{2}{\sqrt{x}-1}\right)\)

=> \(A=\left(\frac{x-2\sqrt{x}+1}{x\sqrt{x}-1}\right)\left(\frac{2}{\sqrt{x}-1}\right)\)

=> \(A=\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

=> \(A=\frac{2}{x+\sqrt{x}+1}\)

c, Ta có : \(A=\frac{2}{x+\sqrt{x}+1}=\frac{2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}}\)

Ta thấy \(\frac{2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}}>0\forall x\ne1\)

6 tháng 6 2018

K=\(\frac{\sqrt{x}+1}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{2x-10}{x+2\sqrt{x}-3}ĐK:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-2x+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{x-1-2x+3\sqrt{x}-2\sqrt{x}-1-6+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

Để K>0 thì :\(\frac{1}{\sqrt{x}-1}>0\Leftrightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)

Với x>1 thoả mãn yêu cầu.

26 tháng 6 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(a,A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}-\frac{2}{1-x}\right)\)

\(=\left(\frac{x.\sqrt{x}}{x.\left(\sqrt{x}-1\right)}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{1-x}-\frac{2}{1-x}\right)\)

\(=\frac{x.\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}.\frac{1-x}{-\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(x.\sqrt{x}-1\right)\left(1-x\right)}{x\left(1-x\right)}=\frac{\sqrt{x^3}-1}{x}\)

\(b,\)\(A=\frac{\sqrt{x}^3-1}{x}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}\)

Để A > 0 \(\Rightarrow\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}>0\)

Mà \(x>0\)và \(x+\sqrt{x}+1>0\)( do x lớn hơn 0 )

\(\Rightarrow\sqrt{x}-1>0\)

\(\Rightarrow\sqrt{x}>1\Leftrightarrow\sqrt{x}>\sqrt{1}\Leftrightarrow x>1\)

11 tháng 8 2020

Kết quả là 25

27 tháng 2 2022

Trả lời:

b, \(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{x+\sqrt{x}}\left(ĐK:x>0\right)\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

c, \(\frac{A}{B}>\frac{3}{2}\Leftrightarrow\frac{2+\sqrt{x}}{\sqrt{x}}:\frac{\sqrt{x}+2}{\sqrt{x}+1}>\frac{3}{2}\) \(\left(ĐK:x>0\right)\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}}\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}>\frac{3}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}}>\frac{3}{2}\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{3}{2}>0\)

\(\Leftrightarrow\frac{2\left(\sqrt{x}+1\right)-3\sqrt{x}}{2\sqrt{x}}>0\)

\(\Rightarrow2\sqrt{x}+1-3\sqrt{x}>0\Leftrightarrow1-\sqrt{x}>0\)

\(\Leftrightarrow-\sqrt{x}>-1\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

Vậy \(0< x< 1\) là giá trị cần tìm.