Cho hàm số y = 2 x + 1 + 1 2 x - m với m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m trong khoảng (–50;50) để hàm số ngịch biến trên (–1;1). Số phần tử của S là:
A. 49
B. 47
C. 48
D. 50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\dfrac{-1}{\left(x-1\right)^2}\)
Gọi phương trình đường thẳng d qua A có dạng: \(y=k\left(x-a\right)+1\)
d tiếp xúc (C) khi và chỉ khi hệ sau có nghiệm:
\(\left\{{}\begin{matrix}\dfrac{-x+2}{x-1}=k\left(x-a\right)+1\\\dfrac{-1}{\left(x-1\right)^2}=k\end{matrix}\right.\)
\(\Rightarrow\dfrac{-x+2}{x-1}=\dfrac{-\left(x-a\right)}{\left(x-1\right)^2}+1\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=x-a-\left(x-1\right)^2\)
\(\Leftrightarrow2x^2-6x+3=-a\) (1)
Để có đúng 1 tiếp tuyến qua A khi (1) có đúng 1 nghiệm
\(\Rightarrow y=-a\) tiếp xúc \(y=2x^2-6x+3\)
\(\Leftrightarrow-a=-\dfrac{3}{2}\Rightarrow a=\dfrac{3}{2}\)
Đáp án A.
Phương pháp: Đặt t = 2 x
Cách giải: Đặt khi đó ta có có luôn đồng biến hoặc nghịch biến trên từng khoảng xác định của nó.
Để hàm số ban đầu nghịch biến trên (–1;1) => hàm số nghịch biến trên
và
Kết hợp
Vậy có tất cả 49 giá trị m nguyên thỏa mãn yêu cầu bài toán