Chứng minh rằng n(n+1)(2n+1) chia hết cho 6 với mọi số nguyên n
ai giải nhanh sẽ có tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có n 2 (n + 1) + 2n(n + 1) = ( n 2 + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)
Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2
⇒ n(n + 1) ⋮ 2
n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3
⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1
vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Ta có: A=n(n+1)(2n+1)
\(=n\left(n+1\right)\left(2n+2-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Leftrightarrow A⋮6\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100
c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)
vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3
Mà(2, 3) = 1
⇒n(n-1)(n-2) chia hết cho 2.3 = 6
n(n + 1)(2n + 1) chia hết cho 6
n(n + 1)(2n + 1) chia hết cho 2 và 3
n(n + 1) là tích 2 số tự nhiên liên tiếp
Nên n(n + 1) chia hết cho 2 < = > n(n + 1)(2n + 1) chia hết cho 2
n chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 1 => 2n + 1 chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 2 => n + 1 chia hết cho 3 => Tích chia hết cho 3
< = > n(n + 1)(2n + 1) chia hết cho 3
UCLN(2,3) = 1
Do đó n(n + 1)(2n + 1) chia hết cho 2.3 = 6
=> ĐPCM