K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

Đáp án cần chọn là: C

Xét tam giác ACD và tam giác BDC có:

+ AD = BC (do ABCD là hình thang cân)

+ AC = BD (do ABCD là hình thang cân)

+ CD là cạnh chung

Suy ra ΔACD = ΔBDC (c.c.c)

Suy ra A C D ^ = B D C ^  (hai góc tương ứng), suy ra tam giác ICD cân tại I.

Nên C sai vì ta chưa đủ điều kiện để IC = CD

Tam giác KCD có hai góc ở đáy bằng nhau nên tam giác KCD cân ở K nên B đúng.

Xét tam giác KDI và tam giác KCI có:

+ KD = KC (do ΔKCD cân tại K))

+ KI là cạnh chung

+ IC = ID

Suy ra ΔKDI = ΔKCI (c.c.c)

Suy ra K D I ^ = C K I ^ , do đó KI là phân giác A K B ^  nên D đúng.

Ta có AB // CD (do ABCD là hình thang) nên K A B ^ = K C D ^ ; K B A ^ = K C D ^  (các cặp góc đồng vị bằng nhau)

Mà K D C ^ = K C D ^ (tính chất hình thang cân) nên K A B ^ = K C D ^  (tính chất hình thang cân) nên  hay ΔKAB cân tại K. Do đó A đúng

29 tháng 7 2017

Đáp án cần chọn là: A

Xét tam giác ACD và tam giác BDC có:

+ AD = BC (do ABCD là hình thang cân)

+ AC = BD (do ABCD là hình thang cân)

+ CD là cạnh chung

Suy ra ΔACD = ΔBDC (c.c.c)

Suy ra A C D ^ = B D C ^ (cmt), suy ra tam giác ICD cân tại I. Do đó ID = IC (1)

Tam giác KCD có hai góc ở đáy bằng nhau nên tam giác KCD cân ở K.

Do đó KC = KD (2)

Từ (1) và (2) suy ra KI là đường trung trực của CD (*).

Xét tam giác ADB và tam giác BCA có:

+ AD = BC (cmt)

+ AB là cạnh chung

+ AC = BD

Suy ra ΔADB = ΔBCA (c.c.c)

Suy ra  A B D ^ = B A C ^

Xét tam giác IAB có A B D ^ = B A C ^  nên tam giác IAB cân tại I.

Do đó IA = IB (3)

Ta có KA = KD – AD; KB = KC – BC

Mà KD = KC, AD = BC, do đó KA = KB (4)

Từ (3) và (4) suy ra KI là đường trung trực của AB. (**)

Từ (*) và (**) suy ra KI là đường trung trực của hai đáy (đpcm)

28 tháng 8 2016

1. 

O A B D C E

+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC

=> tam giác ODC cân tại O => OD = OC  

 mà AD = BC => OA = OB

+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA 

=> Tam giác ODB = OCA (c - g - c)

=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA

=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)

Từ (1)(2) => OE là đường  trung trực của CD

=> OE vuông góc CD mà CD // AB => OE vuông góc với AB

Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường  trung trực

vậy OE là đường trung trực của AB

 

8 tháng 4 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

∆ ACD = ∆ BDC (c.c.c)

Suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ Tam giác ICD cân tại I.

do đó ID = IC (1)

Tam giác KCD có hai góc ở đáy bằng nhau ∠ C =  ∠ D nên tam giác KCD cân tại K

⇒ KD = KC (2)

Từ (1) và (2) suy ra KI là đường trung trực của CD.

Chứng minh tương tự có IA = IB, KA = KB

Suy ra KI là đường trung trực của AB

29 tháng 6 2017

Hình thang cân

24 tháng 8 2017

Rút gọn các biểu thức sau :

a,3√5−√2 +4√6+√2 

b  (√20−√45+√5).√5

c,(5√15 +12 √20−54 √45 +√5):2√5

2√3(2√6−√3+1)

√2+√3×√2−√3

5√7−7√5+2√70√35 

h   (√23 +√32 )×√6

(1+√2+√3)×(1+√2−√3)

1√5+√3 −1√5−√3 

12+√3 +√2√6 −23+√3 

24 tháng 8 2017

giả sử DC>AB, ta chứng minh tam giác KDC cân tại Kthì K thuộc đường trung trực 2 đáy, còn chứng minh 2 tam giác = nhau đẻ => 2 goc= nhau , rồi có tam giác IDC cân tại I và I thuộc đường rung trực của DC

=> đpcm

Chọn A

16 tháng 9 2021

Thanks bn, mà bn ơi? Cho mik hỏi là cách giải nó ntn dạ? :3

Bài 2: 

Ta có: \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}\)(tia CB nằm giữa hai tia CA và CD)

\(\Leftrightarrow\widehat{ACD}=45^0+45^0=90^0\)

Xét tứ giác ACDB có 

CD//AB(cùng vuông góc với AC)

nên ACDB là hình thang có hai đáy là CD và AB(Định nghĩa hình thang)

Hình thang ACDB(CD//AB) có \(\widehat{CAB}=90^0\)(gt)

nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)