Tìm GTLN của H=2020-x^2-3y^2+2xy-10x+14y
Giúp mk nha các bạn
THANKS !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm nốt phần còn lại của bạn Thắng
(x + y - 5)2 + 2(y - 1)2 - 9 = 0
<=> 2(y - 1)2 = 9 - (S - 5)2 \(\ge0\)
\(\Leftrightarrow\left(S-5\right)^2\le9\)
\(\Leftrightarrow-3\le S-5\le3\)
\(\Leftrightarrow2\le S\le8\)
Vậy GTNN là 2 đạt được khi x = y = 1
GTLN là 8 đạt được khi (x, y) = (7, 1)
\(x^2+3y^2+2xy-10x-14y+18\)
\(\Rightarrow\left(x^2+2xy-10x+y^2-10y+25\right)+2y^2-4y-7=0\)
\(\Rightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)
\(\Rightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)-9=0\)
\(\Rightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2-9=0\)
....
Đặt \(A=-x^2-3y^2-2xy+10x+14y-18\)
Ta có : \(-A=x^2+3y^2+2xy-10x-14y+18\)
\(-A=\left(x^2+2xy+y^2\right)+2y^2-10x-14y+18\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)\times5+25\right]+2y^2-4y+7\)
\(-A=\left(x+y-5\right)^2+2\left(y^2-2y+1\right)+5\)
\(-A=\left(x+y-5\right)^2+2\left(y-1\right)^2+5\)
Mà \(\left(x+y-5\right)^2\ge0\forall x;y\in R\)
\(\left(y-1\right)^2\ge0\forall y\in R\Rightarrow2\left(y-1\right)^2\ge0\forall y\in R\)
\(\Rightarrow-A\ge5\)
\(\Leftrightarrow A\le-5\)
Dấu " = " xảy ra khi:
\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)
Vậy Max A = - 5 khi ( x ; y ) = ( 4 ; 1 )
Ta có :
\(x^2+3y^2+2xy-10x-14y+18=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-10x-10y+25+\left(2y^2-4y+2\right)-9=0\)
\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2\left(y^2-2y+1\right)=9\)
\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)
Vì \(2\left(y-1\right)^2\ge0\forall y\)nên \(\left(x+y-5\right)^2\le9\)hay \(\left(M-5\right)^2\le9\)
\(\Rightarrow-3\le M-5\le3\Leftrightarrow2\le M\le8\)
\(B=-\left(x^2-2xy+4y^2-10y+8\right)\)
\(=-\left(x^2-2xy+y^2+3y^2-10y+\dfrac{25}{3}-\dfrac{1}{3}\right)\)
\(=-\left(x-y\right)^2-3\left(y-\dfrac{5}{3}\right)^2+\dfrac{1}{3}\le\dfrac{1}{3}\forall x,y\)
Dấu '=' xảy ra khi x=y=5/3
\(E=1983-x^2-3y^2+2xy-10x+14y\)
\(-E=x^2+3y^2-2xy+10x-14y-1983\)
\(-E=\left(x^2-2xy+y^2\right)+2y^2+10x-14y-1983\)
\(-E=\left[\left(x-y\right)^2+2\left(x-y\right).5+25\right]\)\(+2\left(y^2-2y+1\right)+1956\)
\(-E=\left(x-y+5\right)^2+2\left(y-1\right)^2+1956\)
Do \(\left(x-y+5\right)^2\ge0\forall x;y\)
\(2\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow-E\ge1956\Leftrightarrow E\le-1956\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}\)
Vậy ...
M=x+2y =>x=M-2y
(M-2y)2+2.(M-2y).y+3.y2=6
3.y2-2My+M2-6=0
Pt có nghiệm khi \(\Delta'\ge0\\ M^2-3.\left(M^2-6\right)\ge0\\ -2M^2+18\ge0\\ M^2\le9\\ \)
\(-3\le M\le3\)
\(H=2020-x^2-3y^2+2xy-10x+14y\)
\(=2020-x^2+2xy-y^2-2y^2-10x+14y\)
\(=2020-\left(x^2-2xy+y^2\right)-2y^2-10x+14y\)
\(=1995-\left(x-y\right)^2-2.\left(x-y\right).5-25-2y^2+24y\)
\(=1959-\left[\left(x-y\right)^2+2.\left(x-y\right).5+25\right]-2\left(y^2-12y+36\right)\)
\(=1959-\left(x-y+5\right)^2-2\left(y-6\right)^2\)
Vì \(\left(y-6\right)^2\ge0\)
\(\Rightarrow2\left(y-6\right)^2\ge0\)
và \(\left(x-y+5\right)^2\ge0\)
\(\Rightarrow1959-\left(x-y+5\right)^2-2\left(y-6\right)^2\le1959\)
\(\Rightarrow H\le1959\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y+5\right)^2=0\\\left(y-6\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y+5=0\\y-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=6\end{cases}}\)
Vậy GTLN : Max H = 1959 khi x = 1 ; y = 6
H = 2020 - x2 - 3y2 + 2xy - 10x + 14y
= -x2 + 2xy - y2 - 10x + 10y - 25 - 2y2 + 4y - 2 + 2047
= -(x - y)2 - 10(x - y) - 25 - 2(y - 1)2 + 2047
= -(x - y + 5)2 - 2(y - 1)2 + 2047 \(\le2047\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=-5\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}\)
Vậy Max H = 2047 <=> \(x=-4;y=1\)