K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)

=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)

\(x+y+z=2\)

Thay vào Pt (1)

=> \(xy+z\left(2-z\right)=1\)

 => \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))

Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)

=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)

Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)

\(x+y+z=-2\)

=> \(xy+z\left(-2-z\right)=1\)

=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))

Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)

=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)

=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)

TT => \(x,y,z\ge-\frac{4}{3}\)

Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)

24 tháng 1 2018

v~~ ko thằng admin :(( t làm cái bài này mất gần 30 phút mà bây giờ nó éo hiện câu trả lời của tao ???? hận quá đi 

24 tháng 1 2018

bài này easy lắm bạn ơi :(( 

áp dụng BDT (Am-ag) mẫu ta có

\(\left(x^2+y^2\right)\ge2\sqrt{x^2y^2}=2xy\) rồi thay vào

suy ra   \(\frac{1}{x^2+y^2+2}\le\frac{1}{2xy+2}\)

\(\left(y^2+z^2\right)\ge2yz\)

suy ra \(\frac{1}{y^2+z^2+2}\le\frac{1}{2yz+2}\)

tượng tự vs  BDT con lại rồi + vế vs vế ta được

\(VT\le\frac{1}{2xy+2}+\frac{1}{2yz+2}+\frac{1}{2xz+2}=\frac{1}{xy+xy+1+1}+\frac{1}{yz+yz+1+1}+\frac{1}{xz+xz+1+1}\)

gọi cái  \(\frac{1}{yz+yz+1+1}+.........=Pain\)

áp dụng cosi sáp cho 4 số ta được

\(\frac{1}{xy+xy+1+1}\le\frac{1}{16}\left(\frac{1}{xy}+\frac{1}{xy}+\frac{1}{1}+\frac{1}{1}\right)\)

\(\frac{1}{yz+yz+1+1}\le\frac{1}{16}\left(\frac{1}{yz}+\frac{1}{yz}+\frac{1}{1}+\frac{1}{1}\right)\)

\(\frac{1}{xz+xz+1+1}\le\frac{1}{16}\left(\frac{1}{xz}+\frac{1}{xz}+\frac{1}{1}+\frac{1}{1}\right)\)

+ vế với vế ta được

\(VT\le Pain\le\frac{1}{16}\left(\frac{2}{xz}+\frac{2}{yz}+\frac{2}{xy}+\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\right)\)

\(VT\le PAIN\le\frac{1}{8}\left(\frac{1}{xz}+\frac{1}{yz}+\frac{1}{xy}+1+1+1\right)\)

bây giờ m đi chứng minh cái \(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{xy}\ge3\) chắc là m làm được

áp dụng BDT cô si ta có

\(\frac{1}{xz}+xz\ge2\)

\(\frac{1}{yz}+yz\ge2\)

\(\frac{1}{xz}+zx\ge2\)

+ vế với vế ta được

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+xy+yz+zx\ge6\)

mà đề bài cho xy+yz+xz=3 suy ra

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3\)

nhưng mà nó trái dấu oy :(( kệ nhé cứ thay vào nhé không sao hết bạn oy :)

thay vào ta được

\(VT\le PAIN\le\frac{1}{8}\left(3+3\right)=\frac{3}{4}\)

ĐIỀU CẦN PHẢI CHỨNG MINH :(( 

13 tháng 6 2021

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

13 tháng 6 2021

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

AH
Akai Haruma
Giáo viên
25 tháng 1 2018

Lời giải:

Ta có:

\(\text{VT}=\frac{1}{x^2+y^2+2}+\frac{1}{y^2+z^2+2}+\frac{1}{z^2+x^2+2}\)

\(\Rightarrow 2\text{VT}=\frac{2}{x^2+y^2+2}+\frac{2}{y^2+z^2+2}+\frac{2}{z^2+x^2+2}\)

\(2\text{VT}=1-\frac{x^2+y^2}{x^2+y^2+2}+1-\frac{y^2+z^2}{y^2+z^2+2}+1-\frac{z^2+x^2}{z^2+x^2+2}\)

\(2\text{VT}=3-\left(\frac{x^2+y^2}{x^2+y^2+2}+\frac{y^2+z^2}{y^2+z^2+2}+\frac{z^2+x^2}{z^2+x^2+2}\right)=3-A\)

Áp dụng BĐT Cauchy-Schwarz:

\(A\geq \frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2)+6}=\frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2+xy+yz+xz)}(*)\)

Xét tử số:

\((\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\)

\(=2(x^2+y^2+z^2)+2(\sqrt{(x^2+y^2)(x^2+z^2)}+\sqrt{(x^2+y^2)(y^2+z^2)}+\sqrt{(y^2+z^2)(z^2+x^2)})\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x^2+y^2)(x^2+z^2)}\geq \sqrt{(x^2+yz)^2}=x^2+yz\)

\(\sqrt{(x^2+y^2)(y^2+z^2)}\geq \sqrt{(xz+y^2)^2}=xz+y^2\)

\(\sqrt{(y^2+z^2)(z^2+x^2)}\geq \sqrt{(z^2+xy)^2}=z^2+xy\)

\(\Rightarrow \sum \sqrt{(x^2+y^2)(x^2+z^2)}\geq x^2+y^2+z^2+xy+yz+xz\)

\(\Rightarrow (\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\geq 4(x^2+y^2+z^2)+2(xy+yz+xz)\)

\(\geq 3(x^2+y^2+z^2)+3(xy+yz+xz)=3(x^2+y^2+z^2+xy+yz+xz)\)

(theo BĐT AM-GM)

Do đó: Từ \((*)\Rightarrow A\geq \frac{3(x^2+y^2+z^2+xy+yz+xz)}{2(x^2+y^2+z^2+xy+yz+xz)}=\frac{3}{2}\)

\(\Rightarrow 2\text{VT}\leq 3-\frac{3}{2}=\frac{3}{2}\)

\(\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

26 tháng 1 2018

We have: \(\dfrac{1}{x^2+y^2+2}=\dfrac{1}{x^2+y^2+z^2+2-z^2}\le\dfrac{1}{5-z^2}\)

Similarly and by adding them:

\(\dfrac{1}{5-x^2}+\dfrac{1}{5-y^2}+\dfrac{1}{5-z^2}\le\dfrac{3}{4}\left(\circledast\right)\)

We know that \(\dfrac{1}{5-x^2}\le\dfrac{3\left(x^2+x\right)}{8\left(x^2+x+1\right)}\)

\(\Leftrightarrow-\dfrac{\left(x-1\right)^2\left(3x^2+9x+8\right)}{8\left(x^2-5\right)\left(x^2+x+1\right)}\le0\) It's obviously

\(\Rightarrow L.H.S_{\left(\circledast\right)}\le\dfrac{3}{8}\left(\dfrac{x^2+x}{x^2+x+1}+\dfrac{y^2+y}{y^2+y+1}+\dfrac{z^2+z}{z^2+z+1}\right)\le\dfrac{3}{4}\)

The equality occur when \(x=y=z=1\)

Done!

15 tháng 6 2017

a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)

\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)

\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)

b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)

Áp dụng câu a ta được

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)

15 tháng 6 2017

khó quá

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...