\(\frac{5x+4}{x^2-4x}\) +\(\frac{x-2}{x}\) -\(\frac{x+2}{x-4}\)
giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
mk ko biết làm
xin lỗi bn nhae
xin lỗi vì đã ko giúp được bn
chcus bn học gioi!
nhae@@@
1) -x2+4x-6+ \(\frac{21}{x^2-4x+10}\)= 0
Đặt -x2+4x+10 là a, ta có:
-a +4+\(\frac{21}{a}\)=0
=> \(\frac{21+4a-a^2}{a}\)=0
=> 21+4a-a2=0
=>-(a-2)2=-25
=> (a-2)2=25 => \(\orbr{\begin{cases}a=7\\a=-3\end{cases}}\)
Bạn thay a vào rồi tính tiếp nha
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
Giải:
a) \(\frac{3x+2}{3x-2}\)−62+3x=9x29x2−4 ⇔ \(\frac{9x^2+12x+4}{\left(3x-2\right)\left(3x+2\right)}\) - \(\frac{18x-12}{\left(3x-2\right)\left(3x+2\right)}\) = \(\frac{9x^2}{9x^2-4}\) ⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0
⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)
Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .
b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
⇔ \(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4
⇔ 8 = 4 ( vô lí)
Vậy phương trình trên vô nghiệm.
Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!
b, Có : |x| + |x-2| = |x| + |2-x| >= |x+2-x| = 2
Lại co : |x-1| >= 0
=> |x|+|x-1|+|x-2| >= 2
Dấu "=" xảy ra <=> x.(2-x) >= 0 và x-1=0 <=> x=1
Vậy x=1
Tk mk nha
\(M=\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}-\frac{4x^2}{x^2-1}\right):\frac{4\left(x^2-3\right)}{x\left(1-x\right)}\)
\(=\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}+\frac{4x^2}{1-x^2}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\left(\frac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\frac{\left(1-x\right)^2}{\left(1+x\right)\left(1-x\right)}+\frac{4x^2}{\left(1+x\right)\left(1-x\right)}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\left(\frac{\left(1+x\right)^2-\left(1-x\right)^2+4x^2}{\left(1-x\right)\left(1+x\right)}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\frac{\left(1+x+1-x\right)\left(1+x-1+x\right)+4x^2}{\left(1-x\right)\left(1+x\right)}.\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\frac{2.2x+4x^2}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{4x+4x^2}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{4x\left(1+x\right)}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{x}{1}.\frac{x}{\left(x^3-3\right)}\)
\(=\frac{x^2}{x^3-3}\)
\(\frac{5x+4}{x^2-4x}+\frac{x-2}{x}-\frac{x+2}{x-4}=\frac{5x+4}{x\left(x-4\right)}+\frac{x-2}{x}-\frac{x+2}{x-4}\)
\(=\frac{5x+4}{x\left(x-4\right)}+\frac{\left(x-2\right)\left(x-4\right)}{x\left(x-4\right)}-\frac{x\left(x+2\right)}{x\left(x-4\right)}\)
Khử mẫu : \(5x+4+x^2-4x-2x+8-x^2-2x\)
\(=-x+12\)
Bài làm
Ta có : \(\frac{5x+4}{x^2-4x}+\frac{x-2}{x}-\frac{x+2}{x-4}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne4\end{cases}}\)
\(=\frac{5x+4}{x\left(x-4\right)}+\frac{x-2}{x}-\frac{x+2}{x-4}\)
\(=\frac{5x+4}{x\left(x-4\right)}+\frac{\left(x-2\right)\left(x-4\right)}{x\left(x-4\right)}-\frac{x\left(x+2\right)}{x\left(x-4\right)}\)
\(=\frac{5x+4}{x\left(x-4\right)}+\frac{x^2-6x+8}{x\left(x-4\right)}-\frac{x^2+2x}{x\left(x-4\right)}\)
\(=\frac{5x+4+x^2-6x+8-x^2-2x}{x\left(x-4\right)}\)
\(=\frac{-3x+12}{x\left(x-4\right)}\)
\(=\frac{-3\left(x-4\right)}{x\left(x-4\right)}=-\frac{3}{x}\)