K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2020

Ta có : 2a2 + 2b2 = 5ab

=> 2a2 + 2b2 - 4ab = 5ab - 4ab

=> 2(a2 + b2 - 2ab) = ab

=> (a - b)2 = ab/2 

Lại có 2a2 + 2b2 = 5ab

=> 2a2 + 2b2 + 4ab = 5ab + 4ab

=> 2(a + b)2 = 9ab

=> (a + b)2 = 9ab/2

Ta có P2 = \(\left(\frac{a+b}{a-b}\right)^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{\frac{9ab}{2}}{\frac{ab}{2}}=9\)

=> P = \(\pm\)3

Vậy P = \(\pm\)3

25 tháng 9 2021

Kham khảo bài lm này nhé:
1501829299_1.jpg

25 tháng 9 2021

\(2a^2+2b^2=5ab\\ \Leftrightarrow2a^2-5ab+2b^2=0\\ \Leftrightarrow2a^2-4ab-ab+2b^2=0\\ \Leftrightarrow2a\left(a-2b\right)+b\left(a-2b\right)=0\\ \Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-\dfrac{b}{2}\\a=2b\end{matrix}\right.\)

Với \(a=-\dfrac{b}{2}\Leftrightarrow Q=\dfrac{-\dfrac{b}{2}+b}{-\dfrac{b}{2}-b}=\dfrac{b}{2}:\dfrac{-3b}{2}=\dfrac{b}{-3b}=-\dfrac{1}{3}\)

Với \(a=2b\Leftrightarrow Q=\dfrac{3b}{b}=3\)

26 tháng 11 2021

\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)

26 tháng 11 2021

D . \(2.\left(a^2-b^2\right)\)

20 tháng 7 2018

Áp dụng bđt Bunhiacopxki cho 3 số a,a,b, ta có:

3(b^2+2a^2)^3=(1^2+1^2+1^2)(a^2+a^2+b^2)>=(a+a+b)^2=(b+2a)^2

27 tháng 12 2016

Giải nhanh dùm mem đi

27 tháng 12 2016

phan h nhan vo la duoc

25 tháng 9 2019

trả lời lẹ cho tui cấy

26 tháng 3 2017

dot qua

26 tháng 3 2017

ko dc dau

NV
19 tháng 7 2021

Xét hiệu \(2a^2+2b^2-\left(a^3+ab^2\right)=\left(2a^2-a^3\right)+\left(2b^2-ab^2\right)\)

\(=a^2\left(2-a\right)+b^2\left(2-a\right)\)

\(=\left(a^2+b^2\right)\left(2-a\right)\)

Do \(a^2+b^2\ge0;\forall a;b\) nên:

\(2a^2+2b^2>a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\2-a>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2\ne0\\a< 2\end{matrix}\right.\)

\(2a^2+2b^2=a^3+ab^2\) khi \(\left[{}\begin{matrix}a^2+b^2=0\\2-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\a=2\end{matrix}\right.\)

\(2a^2+2b^2< a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\a>2\end{matrix}\right.\) \(\Rightarrow a>2\)

\(2a^2+2b^2\ge a^3+ab^2\) khi \(2-a\ge0\Leftrightarrow a\le2\)

21 tháng 4 2019

Ta có A 1 ^ + A 2 ^ = B 1 ^ + B 2 ^ = 180 ° ⇒ 2 A 1 ^ + 2 A 2 ^ = 2 B 1 ^ + 2 B 2 ^  (1)

Mặt khác: A 1 ^ − 2 A 2 ^ = B 1 ^ − 2 B 2 ^  (2)

Cộng từng vế các đẳng thức (1) và (2) được  3 A 1 ^ = 3 B 1 ^ ⇒ A 1 ^ = B 1 ^

=> a // b vì có cặp góc so le trong bằng nhau