a) tìm M để 3 điểm A ( 2;-1) và B(-3;4) và C ( m-1 ; 2m+1) thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d)//Ox thì m-1=0
=>m=1
b: Thay x=-1 và y=1 vào (d), ta được:
-m+1+m=1
=>1=1(luôn đúng)
c: Thay x=\(\dfrac{2-\sqrt{3}}{2}\) và y=0 vào (d), ta đc:
\(\left(m-1\right)\cdot\dfrac{2-\sqrt{3}}{2}+m=0\)
=>\(\left(m-1\right)\cdot\left(2-\sqrt{3}\right)+2m=0\)
=>\(2m-\sqrt{3}m-2+\sqrt{3}+2m=0\)
=>\(m\left(4-\sqrt{3}\right)=2-\sqrt{3}\)
=>\(m=\dfrac{2-\sqrt{3}}{4-\sqrt{3}}\)
Vậy với M(5; 7) hoặc M(5; 0) thì tam giác ABM vuông tại M.
Vậy P(-5; 2)
b: Thay x=-1 và y=1 vào (d), ta được:
-2m+1+m=1
hay m=0
a. d qua gốc tọa độ khi:
\(m-2=0\Rightarrow m=2\)
b. d cắt trục tung tại điểm có tung độ là 1/3 khi:
\(m-2=\dfrac{1}{3}\Rightarrow m=\dfrac{7}{3}\)
c. d qua A khi:
\(2\left(1-4m\right)+m-2=-3\)
\(\Rightarrow m=\dfrac{3}{7}\)
a: Thay x=-3 và y=2 vào (d), ta được:
-6m+9+4-3m=2
=>-9m=-11
hay m=11/9
b: Thay x=0 và y=-3 vào (d), ta được:
4-3m=-3
=>3m=7
hay m=7/3
c: Thay x=3 và y=8 vào (d), ta được:
6m-9+4-3m=8
=>3m=13
hay m=13/3
\(a,\left(d\right)\)//\(\left(d'\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}2m-3=m\\-m+2\ne3m-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m=3\)
b, (d) cắt (d') \(\Leftrightarrow2m-3\ne m\Leftrightarrow m\ne3\)
\(a,\Leftrightarrow y=0;x=2\Leftrightarrow2m-2+m-2=0\Leftrightarrow m=\dfrac{4}{3}\)
\(b,\) PT giao Ox: \(\Leftrightarrow\left(m-1\right)x=2-m\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{2-m}{m-1}\right|\)
PT giao Oy: \(y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\)
\(S_{OAB}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{2}{3}\Leftrightarrow\left|\dfrac{2-m}{m-1}\cdot\left(m-2\right)\right|=\dfrac{4}{3}\\ \Leftrightarrow\left|\dfrac{-\left(m-2\right)^2}{m-1}\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m-2\right)^2}{m-1}=\dfrac{4}{3}\left(1\right)\\\dfrac{-\left(m-2\right)^2}{1-m}=\dfrac{4}{3}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-3m^2+12m-12=4m-4\\ \Leftrightarrow3m^2-9m+9=0\\ \Leftrightarrow m\in\varnothing\\ \left(2\right)\Leftrightarrow-3m^2+12m-12=4-4m\\ \Leftrightarrow3m^2-16m+16=0\\ \Leftrightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\) thỏa đề
\(c,\) Gọi \(E\left(x_0;y_0\right)\) là điểm cần tìm
\(\Leftrightarrow\left(m-1\right)x_0+m-2=y_0\\ \Leftrightarrow mx_0+m-x_0-y_0-2=0\\ \Leftrightarrow m\left(x_o+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2-x_0=-1\end{matrix}\right.\Leftrightarrow E\left(-1;-1\right)\)