K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

2 tháng 12 2016

MD // AC

ME // AB

=> ADME là hình bình hành

=> AE = DM

mà DM = MN (D đối xứng N qua M)

=> AE = MN

Xét tam giác AEO và tam giác NMO có:

AE = NM (chứng minh trên)

AEO = NMO (2 góc so le trong, MD // AC)

EO = MO (O là trung điểm của EM)

=> Tam giác AEO = Tam giác NMO (c.g.c)

=> AOE = NOM (2 góc tương ứng)

mà AOE + AOM = 1800

=> AOM + NOM = 1800

=> A, O, N thẳng hàng

ADME là hình thoi

<=> AM là tia phân giác của BAC

<=> M là giao điểm của tia phân giác BAC và BC

ADME là hình thoi

=> DM = ME

mà DM = \(\frac{MN}{2}\) (DM = MN)

=> ME = \(\frac{MN}{2}\)

mà ME là đường trung tuyến của tam giác DEN (M là trung điểm của DN)

=> Tam giác DEN vuông tại E

19 tháng 12 2021

a: Xét tứ giác ABOC có

H là trung điểm của OA

H là trung điểm của BC

Do đó: ABOC là hình bình hành

mà OA=OB

nên ABOC là hình thoi

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

20 tháng 12 2020

Đề bài sai rồi bạn

8 tháng 8 2019

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!