K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

Giải bằng tính chất Dirichlet đấy nhé các bạn

19 tháng 8 2018

Vào câu hỏi tương tự có bài giống đấy nhé bạn ạ !

31 tháng 12 2018

Ta có \(a_1\) là số lẻ\(\Rightarrow a_1^2\) là số lẻ

Tương tự:

\(a_2^2\) là số lẻ

...

\(a_{2018}^2\) là số lẻ

\(a^2_{2019}\)là số lẻ

Ta có tổng của 2018 số lẻ sẽ là một số chẵn

\(\Rightarrow a_1^2+a_2^2+a_3^2+...+a_{2018}^2\) là một số chẵn

\(a^2_{2019}\) là số lẻ

Vậy không tồn tại 2019 số \(a_1,a_2,a_3,...,a_{2019}\)nguyên lẻ thỏa mãn đẳng thức \(a_1^2+a_2^2+a_3^2+...+a_{2018}^2=a^2_{2019}\)

NV
20 tháng 9 2020

\(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}\ge\frac{\left(\sqrt{2019}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}\)

Dấu "=" ko xảy ra nên \(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)

14 tháng 2 2019

a, 2x+2y/x+y=2

=> 2(x+y)/x+y=2

=>2/1=2

=> đpcm

Câu b thì mình nghĩ nó không thể bằng được đâu bạn