K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2020

\(\frac{1}{A}=\frac{2\left|2x+5\right|+6}{\left|2x+5\right|+9}=\frac{2\left(\left|2x+5\right|+9\right)-12}{\left|2x+5\right|+9}=2-\frac{12}{\left|2x+5\right|+9}\)

Vì \(\left|2x+5\right|\ge0\Rightarrow\left|2x+5\right|+9\ge9\Rightarrow\frac{12}{\left|2x+5\right|+9}\le\frac{4}{3}\Rightarrow-\frac{12}{\left|2x+5\right|+9}\ge-\frac{4}{3}\)

\(\Rightarrow\frac{1}{A}=2-\frac{12}{\left|2x+5\right|+9}\ge\frac{2}{3}\)\(\Rightarrow A\le\frac{3}{2}\)

Dấu "=" xảy ra khi \(\left|2x+5\right|=0\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(GTLN\)của \(A\)là \(\frac{3}{2}\Leftrightarrow x=-\frac{5}{2}\)

2 tháng 7 2018

ABCD dễ (tự làm)

E = ... <= 0 + 0 = 0

1 tháng 10 2021

`A=-(x^2-2x)-(y^2+6y)+9`

`=-(x^2-2x+1)-(y^2+6y+9)+19`

`=-(x-1)^2-(y+3)^2+19<=19`

Dấu "=" xảy ra khi `x=1` và `y=-3`

`B=-(2x-5)^2+6|2x+5|+4`

`=-[(2x-5)^2-6|2x-5|+9]+13`

`=-(|2x-5|-3)^2+13<=13`

Dấu "=" xảy ra khi `|2x-5|=3<=>[(x=4),(x=1):}`

DD
28 tháng 5 2021

a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)

Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).

b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)

Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).

28 tháng 5 2021

Tìm GTNN và GTLN mà

24 tháng 9 2019

a) Đặt \(x-1=a\)

\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)

Vậy pt vô nghiệm

24 tháng 9 2019

a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2}=2\)

=> không có x thỏa mãn đề bài.

b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)

\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)

\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)

\(7-4x-3x^2=25x-25\)

\(7-4x-3x^2-25x+25=0\)

\(32-29x-3x^2=0\)

\(3x^2+29x-30=0\)

\(3x^2+32x-3x-32=0\)

\(x\left(3x+32\right)-\left(3x+32\right)=0\)

\(\left(3x+32\right)\left(x-1\right)=0\)

\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)

\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)

6 tháng 1 2020

a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)

Ta thấy \(x^2\ge0\forall x\)

=> \(x^2+4\ge4\forall x\)

=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)

=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)

\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)

29 tháng 1 2017

Bài 1:

Ta có: \(-\left|2x+6\right|\le0\)

\(\Rightarrow9-\left|2x+6\right|\le9\)

\(\Rightarrow5-\left(9-\left|2x+6\right|\right)\le5\)

Dấu "=" xảy ra <=> 2x + 6 = 9 <=> x = \(\frac{3}{2}\)

Vậy GTNN của A là 5 khi x = \(\frac{3}{2}\)

Bài 2:

Ta có: \(\left|2x+6\right|\ge0\)

\(\Rightarrow\left|2x+6\right|-3\ge-3\)

\(\Rightarrow-5-\left(\left|2x+6\right|-3\right)\ge-5\)

Dấu "=" xảy ra <=> 2x + 6 = 3 <=> x = \(-\frac{3}{2}\)

Vậy GTLN của A là -5 khi x = \(-\frac{3}{2}\)

1 tháng 6 2019

\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)

\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)

\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)

\(\Rightarrow x^2-3x-6=0\)

.....

1 tháng 6 2019

\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)

\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)

\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)

.....

14 tháng 7 2020

 rl8ph6gr59i5fe5ed7i90u68xw8pce5u

; ouunogrr