K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2020

\(a)\)√x2−9+√x2−6x+9=0x2−9+x2−6x+9=0

⇒√(x−3)(x+3)+√(x−3)2=0⇒(x−3)(x+3)+(x−3)2=0

⇒√(x−3)(x+3)+x−3=0⇒(x−3)(x+3)+x−3=0

Đặt x−3=tx−3=t pt thành

√t(t−6)−t=0t(t−6)−t=0

⇔t2−6t=t2⇔t2−6t=t2

⇔t=0⇔t=0⇒x−3=0⇔x=3

\(b)\)√x2−4−x2+4=0x2−4−x2+4=0

⇔√x2−4=x2−4⇔x2−4=x2−4

Đặt √x2−4=tx2−4=t pt thành

t=t2⇒t(1−t)=0t=t2⇒t(1−t)=0

⇒[t=1t=0⇒[t=1t=0.

Với t=0⇒√x2−4=0⇒x=±2t=0⇒x2−4=0⇒x=±2 

Với t=1⇒√x2−4=1t=1⇒x2−4=1⇒x=±√5

24 tháng 6 2023

\(a,4+x^2+4x=0\)

\(\Leftrightarrow x^2+4x+4=0\)

\(\Leftrightarrow\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy \(S=\left\{-2\right\}\)

\(b,-6x+9+x^2=0\)

\(\Leftrightarrow x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(S=\left\{3\right\}\)

24 tháng 6 2023

thank you

24 tháng 2 2022

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)

12 tháng 12 2017

15 tháng 5 2021

\(|x-6|=-5x+9\)

Xét \(x\ge6\)thì \(pt< =>x-6=-5x+9\)

\(< =>x-6+5x-9=0\)

\(< =>6x-15=0\)

\(< =>x=\frac{15}{6}\)(ktm)

Xét \(x< 6\)thì \(pt< =>x-6=5x-9\)

\(< =>4x-9+6=0\)

\(< =>4x-3=0< =>x=\frac{3}{4}\)(tm)

Vậy ...

17 tháng 7 2019

bài lạ thật

17 tháng 7 2019

ý bạn là như thế này đúng không ạ:

a/ \(x^2-6x+5=0\)

\(x^2-5x-x+5=0\)

\(x\left(x-5\right)-\left(x-5\right)=0\)

\(\left(x-5\right)\left(x-1\right)=0\)

\(\orbr{\begin{cases}x-5=0\rightarrow x=5\\x-1=0\rightarrow x=1\end{cases}}\)

b/\(2x^2+7x+9=0\)

?!

c/ \(4x^2-7x+3=0\)

\(4x^2-4x-3x+3=0\)

\(4x\left(x-1\right)-3\left(x-1\right)=0\)

\(\left(x-1\right)\left(4x-3\right)=0\)

\(\orbr{\begin{cases}x-1=0\Rightarrow x=1\\4x-3=0\Rightarrow x=\frac{3}{4}\end{cases}}\)

d/ \(2\left(x+5\right)=2x+10\)

-,- mik ko rõ đề ạ, sai thì ibox ạ.Cảm ơn

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

17 tháng 7 2019

a) x=0

b) x=0

c) x=0

d)x=x

17 tháng 7 2019

a b c d 

x=x

16 tháng 1 2021

\(a,\left(2x-3\right)^2=\left(x+1\right)^2\\ \Leftrightarrow\left(2x-3\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-3+x+1\right)\left(2x-3-x-1\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-4\right)\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\x=4\end{matrix}\right. \\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{2}{3};4\right\}\)

 

16 tháng 1 2021

\(b,x^2-6x+9=9\left(x-1\right)^2\\ \Leftrightarrow\left(x-3\right)^2=9\left(x-1\right)^2\\ \Leftrightarrow\left(x-3\right)^2-9\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-3\right)^2-3^2\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-3\right)^2-\left[3\left(x-1\right)\right]^2=0\\ \Leftrightarrow\left(x-3\right)^2-\left(3x-3\right)^2=0\\ \Leftrightarrow\left(x-3+3x-3\right)\left(x-3-3x+3\right)=0\\ \Leftrightarrow-2x\left(4x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-2x=0\\4x-6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{0;\dfrac{3}{2}\right\}\)

 

1 tháng 12 2019

Đáp án B.

Ta có:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Vậy tập nghiệm của bất phương trình là: ( - ∞ ;1) ∪ (4; + ∞ )

12 tháng 11 2017

Chọn B.

Ta có:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Vậy tập nghiệm của bất phương trình là S = ( - ∞ ;1) ∪ (4; + ∞ ).

3 tháng 10 2019

Đáp án: A

Ta có bảng xét dấu:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Dựa vào bảng xét dấu ta thấy tập nghiệm của bất phương trình là: (- ∞ ;1) ∪ (4;+ ∞ )