Tìm số tự nhiên x > 0 sao ch x2 +36 là hai số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ }{ab}-\frac{ }{ba}\)=a.10+b-b.10+a=a.9+b.(-9)=a.9+(-b).9=9.[a+(-b)]=9.(a-b)
Để 9.(a-b) là số chính phương thì hoặc a-b=4 hoặc a-b=9
Trường hợp 1: Vì a,b là các chữ số ; a khác 0 nên
a-b=4=5-1=6-2=7-3=8-4=9-5
Vậy hoặc a=5 ; b=1 hoặc a=6 ; b=2 hoặc a=7 ; b=3 hoặc a=8 ; b=4 hoặc a=9 ; b=5
Trường hợp 2: a-b=9. Vì a,b là các chữ số nên không có giá trị nào của a,b thỏa mãn trường hợp này.
Kết luận : (những kết quả ở trường hợp 1)
a. \(x=\left\{4;9;16\right\}\)
b. \(x=1\)
c. \(x=\left\{-2;-1\right\}\)
Tìm số tự nhiên n ( n > 0 ) sao cho tổng của: 1! + 2! + 3! + 4! + . . . + n! là một số chính phương.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
+) Với n = 1 thì 1! = 1 = 1² là số chính phương .
+) Với n = 2 thì 1! + 2! = 3 không là số chính phương
+) Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
+) Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3
Thu voi n=1;2;3;4 ta chon n=1;3
Voi n >4 => 1!+2!+3!1!+2!+3!+...+n!=1!+2!+3!+4!+5!+...+n!=33+A0¯1!+2!+3!+...+n!=1!+2!+3!+4!+5!+...+n!=33+A0¯(vi 5!;6!;... co tan cung la 0) hay tong nay co tan cung la 3 => Tong nay khong phai là so chinh phuong vi khong co so chinh phuong nao co tan cung la 3 => loai
Vay n=1;3
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
thắng mô ở trường mà k bt hậy
\(36^n-6\)là số chính phương khi đó tồn tại số nguyên dương k sao cho:
\(36^n-6=k^2\)
Vì \(\hept{\begin{cases}36⋮6\\6⋮6\end{cases}}\)=> \(k^2⋮6\)=> \(k⋮6\)=> Đặt : k = 6t ( t nguyên dương )
Khi đó: \(36^n-6=36t^2\)
<=> \(6.36^{n-1}-1=6t^2\)
Vì \(6t^2⋮6\); \(6.36^{n-1}⋮6\)=> \(1⋮6\)vô lí
Vậy không tồn tại n.
A)(0;0)(1;1)
B)Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
a)xy=x+y
=>xy-x-y=0
=>x(y-1)-(y-1)-1=0
=>x(y-1)-(y-1)=1
=>(y-1)(x-1)=1
=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0
b)Câu này khó quá nhưng ủng hộ nha