Tìm x, y thuộc N thỏa mãn x^2+x+3=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2y+3=x2
Với y=0 suy ra 20+3=x2 suy ra 4 = x2
suy ra x=2 ( vì x thuộc N)
Với y>0 suy ra VP = 2y+3 luôn là số lẻ
nên 2y+3 khác x2
vậy y=0,x=2
x2 = 1!+2!+3!+...........................+y!
<=> x2 = 1+ 1.2 + 1.2.3+.........+ 1.2.3.....y
<=> x2 .8 = 8+.2.8+.2.3.8+.....+.2.3.....y.8
<=> x2 .8 = 8 + .2.[7+1] + .2.3[9-1] + ......+ y[y-1]!
= 8 +-2.7+1.2+1,
Ta có(2-x) và (y-1) thuộc ước của 12
Ư(12) ={1;12;2;6;3;4;-1;-2;-3;-4;-6;-12}
th1 2-x=1 suy ra x=1 ; y-1=12 suy ra y=13(tm)
th2 2-x=12 suy ra x thuộc rỗng (ko tm)
th3 2-x=2 suy ra x=0;y-1=6 suy ra y=7(tm)
th4 2-x=6 suy ra x thuộc rỗng (ko tm)
th5 2-x=3 suy ra x thuộc rỗng (ko tm)
th6 2-x=4 suy ra x thuộc rỗng (ko tm)
th7 2-x=-1 suy ra x=3; y-1=-12(ko tm)
th8 2-x=-12 suy ra x=14;y-1=-1 suy ra y=0(tm)
th9 2-x=-4 suy ra x=6; y-1=-3 suy ra y=-2(ko tm)
th10 2-x=-3 suy ra x=5;y-1=-4 suy ra y=-3(ko tm)
th11 2-x=-2 suy ra x=4; y-1=-6 suy ra y=-5(ko tm)
th12 2-x=-6 suy ra x=8 ; y-1=-2 suy ra y=-1(ko tm)
tíck đúng nhoa bn
Ta có(2-x) và (y-1) thuộc ước của 12
Ư(12) ={1;12;2;6;3;4;-1;-2;-3;-4;-6;-12}
th1 2-x=1 suy ra x=1 ; y-1=12 suy ra y=13(tm)
th2 2-x=12 suy ra x thuộc rỗng (ko tm)
th3 2-x=2 suy ra x=0;y-1=6 suy ra y=7(tm)
th4 2-x=6 suy ra x thuộc rỗng (ko tm)
th5 2-x=3 suy ra x thuộc rỗng (ko tm)
th6 2-x=4 suy ra x thuộc rỗng (ko tm)
th7 2-x=-1 suy ra x=3; y-1=-12(ko tm)
th8 2-x=-12 suy ra x=14;y-1=-1 suy ra y=0(tm)
th9 2-x=-4 suy ra x=6; y-1=-3 suy ra y=-2(ko tm)
th10 2-x=-3 suy ra x=5;y-1=-4 suy ra y=-3(ko tm)
th11 2-x=-2 suy ra x=4; y-1=-6 suy ra y=-5(ko tm)
th12 2-x=-6 suy ra x=8 ; y-1=-2 suy ra y=-1(ko tm)
ta có
\(4x^2+4x+12=4y^2\Leftrightarrow\left(2x+1\right)^2+11=4y^2\)
\(\Leftrightarrow11=\left(2y\right)^2-\left(2x+1\right)^2=\left(2x+2y+1\right)\left(2y-2x-1\right)\)
vậy 2x+2x+1 và 2y-2x-1 là ước của 11
do x, y là số tư nhiên nên 2x+2x+1> 2y-2x-1 do đó \(\hept{\begin{cases}2x+2y+1=11\\2y-2x-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)