K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

\(ĐKXĐ:x\ge1\)

\(x^2-3x=2\sqrt{x-1}-4\)

\(\Leftrightarrow x^2-3x-2\sqrt{x-1}+4=0\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+x^2-4x+4=0\)

\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(\sqrt{x-1}-1\right)^2\ge0\)\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(x-2\right)^2\ge0\)(2)

Từ (1) và (2) \(\Rightarrow\)Dấu " = " xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\x=2\end{cases}}\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy \(x=2\)

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)

\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)

\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2-3b^2-2ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow a=3b\)

\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)

\(\Leftrightarrow x^2-x=9\left(x+1\right)\)

\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)

NV
22 tháng 2 2021

2.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:

\(x^3+3\left(x^2-4a^2\right)a=0\)

\(\Leftrightarrow x^3+3ax^2-4a^3=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

11 tháng 1 2021

ĐK: \(-1\le x\le4\)

\(\sqrt{x+1}+\sqrt{4-x}=t\left(\sqrt{5}\le t\le\sqrt{10}\right)\Rightarrow\sqrt{-x^2+3x+4}=\dfrac{t^2-5}{2}\)

\(pt\Leftrightarrow t+\dfrac{t^2-5}{2}=5\)

\(\Leftrightarrow t^2+2t-15=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+5\right)=0\)

\(\Leftrightarrow t=3\left(\text{Vì }\sqrt{5}\le t\le\sqrt{10}\right)\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}=3\)

\(\Leftrightarrow5+2\sqrt{-x^2+3x+4}=9\)

\(\Leftrightarrow\sqrt{-x^2+3x+4}=2\)

\(\Leftrightarrow-x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

11 tháng 1 2021

t là cái j vậy bn, còn điều kiện làm sao để tìm

AH
Akai Haruma
Giáo viên
28 tháng 7 2021

Lời giải:

Đặt $\sqrt[3]{x^2+3x-5}=a; \sqrt[3]{x+2}=b$. Khi đó pt đã cho tương đương với:

$a+b=\sqrt[3]{a^3+b^3-1}+1$

$\Leftrightarrow a+b-1=\sqrt[3]{a^3+b^3-1}$

$\Leftrightarrow (a+b-1)^3=a^3+b^3-1$

$\Leftrightarrow (a+b)^3-3(a+b)^2+3(a+b)-1=a^3+b^3-1$

$\Leftrightarrow 3ab(a+b)-3(a+b)^2+3(a+b)=0$

$\Leftrightarrow ab(a+b)-(a+b)^2+(a+b)=0$

$\Leftrightarrow (a+b)(ab-a-b+1)=0$

$\Leftrightarrow (a+b)(a-1)(b-1)=0$

Nếu $a+b=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=-\sqrt[3]{x+2}$

$\Leftrightarrow x^2+3x-5=-(x+2)$

$\Leftrightarrow x^2+4x-3=0$

$\Leftrightarrow x=-2\pm \sqrt{7}$

Nếu $a-1=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=1$

$\Leftrightarrow x^2+3x-6=0$

$\Leftrightarrow x=\frac{-3\pm \sqrt{33}}{2}$

Nếu $b-1=0\Leftrightarrow \sqrt[3]{x+2}=1$

$\Leftrightarrow x=-1$

 

10 tháng 12 2021

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

10 tháng 12 2021

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)