ai giúp mình bài toán tìm x này với :3 phần x-1;4 phần x+1;2 nhân x+5 phần x-1(các bạn làm ơn làm nhanh nha để sáng mai vân nộp bài cho thầy giáo nha!)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : ( x - 342 ) / 6 = 0 = \(\frac{\left(x-342\right)}{6}=0\)= ( x - 342 ) : 6 = 0
làm theo tìm x :
ta có : ( x - 342 ) : 6 = 0
x - 342 = 0 x 6
x - 342 = 0
=> x = 0 + 342
=> x = 342
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x\cdot\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x\cdot\left(x+2\right)}\right)=\frac{20}{41}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(1-\frac{1}{x+2}=\frac{40}{41}\)
\(\frac{1}{x+2}=1-\frac{40}{41}\)
\(\frac{1}{x+2}=\frac{1}{41}\)
\(\Rightarrow x+2=41\Rightarrow x=39\)
12 . ( x - 1 ) : 3 = 43 + 23
12 . ( x - 1 ) : 3 = 64 + 8
12 . ( x - 1 ) : 3 = 72
12 . ( x - 1 ) = 72 . 3
12 . ( x - 1 ) = 216
x - 1 = 216 : 12
x - 1 = 18
x = 18 + 1
x = 19
1, 2006 x 2005 - 1/2004 x 2006 + 2005 = 4411,202002
2,18 x (19191919/21212121 + 88888/99999) = 3,91015873
k mk nha pạn
mk nhanh nhất
Ta có các TH:
+/ x-1\(\ge\)0 => x\(\ge\)1=> Ix-1I=x-1 và I1-xI=x-1
Phương trình tương đương: 2016(x-1)+(x-1)2=2015(x-1)
<=> (x-1)+(x-1)2=0 <=> (x-1)(1+x-1)=0
<=> x(x-1)=0 => x=0 (Loại) và x=1 (Chọn)
+/ x-1< 0 => x<1=> Ix-1I=1-x và I1-xI=1-x
Phương trình tương đương: 2016(1-x)+(x-1)2=2015(1-x)
<=> (1-x)+(x-1)2=0 <=> (x-1)(-1+x-1)=0
<=> (x-1)(x-2)=0 => x=1 (Loại) và x=2 (Loại) vì x<1
ĐS: x=1
Suy ra 2016 . |x-1| - 2015. |1-x| + ( x-1 )^2 =0 ( chuyển vế)
suy ra |x-1| (2016-2015) + (x-1)^2 =0 ( đổi |1-x| thành |x-1| rồi phân phối)
suy ra |x-1| . 1 + (x-1)^2 =0
Suy ra |x-1| + (x-1)^2 =0
Vì | x-1| >=0, mọi x
(x-1)^2 >=0, mọi x
suy ra |x-1| + (x-1)^2 >= 0, mọi x
dấu ' = ' xảy ra <=> (x-1) =0 hoặc (x-1)^2 =0
Tính ra thì cả 2 kết quả đều ra x=1
vậy x=1
Ko tránh khỏi thiếu sót, nếu sai ai đo sửa lại nhé. thắc mắc gì thì cứ hỏi
_Hết_
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề và hỗ trợ tốt hơn nhé.