K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

\(32:\left(3x-2\right)=8\)

\(\left(3x-2\right)=32:8\)

\(3x-2=4\)

\(3x=4+2\)

\(3x=6\)

\(x=6:3=2\)

~GOOD STUDY~

10 tháng 11 2020

\(2^5:\left(3x-2\right)=2^3\)

\(\Rightarrow3x-2=2^2=4\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

học tốt^^

26 tháng 3 2020

a) \(x-2=-6\)

\(x=-6+2\)

\(x=-4\)

b) \(15-\left(x-7\right)=-21\)

\(x-7=36\)

\(x=43\)

c) \(4.\left(3x-4\right)-2=18\)

\(4\left(3x-4\right)=20\)

\(3x-4=5\)

\(3x=9\)

\(x=3\)

d) \(\left(3x-6\right)+3=32\)

\(3x-6=29\)

\(3x=29+6\)

\(3x=35\)

\(x=\frac{35}{3}\)

e) \(\left(3x-6\right).3=32\)

\(3x-6=\frac{32}{3}\)

\(3x=\frac{32}{3}+6\)

\(3x=\frac{50}{3}\)

\(x=\frac{50}{9}\)

f) \(\left(3x-6\right):3=32\)

\(3x-6=96\)

\(3x=102\)

\(x=34\)

g) \(\left(3x-6\right)-3=32\)

\(3x-6=35\)

\(3x=41\)

\(x=\frac{41}{3}\)

h) \(\left(3x-2^4\right).7^3=2.7^4\)

\(\left(3x-2^4\right)=2.7=14\)

\(\left(3x-16\right)=14\)

\(3x=14+16=30\)

\(x=10\)

i) \(\left|x\right|=\left|-7\right|\)

\(\left|x\right|=7\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

k) \(\left|x+1\right|=2\)

\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

l) \(\left|x-2\right|=3\)

\(\Rightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)

m) \(x+\left|-2\right|=0\)

\(x+2=0\)

\(x=-2\)

o) \(72-3\left|x+1\right|=9\)

\(3\left|x-1\right|=63\)

\(\left|x-1\right|=21\)

\(\Rightarrow\orbr{\begin{cases}x-1=21\\x-1=-21\end{cases}\Rightarrow\orbr{\begin{cases}x=22\\x=-20\end{cases}}}\)

p) Ta có: \(\left|x-1\right|=3\)

\(\Rightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)

mà \(x+1< 0\)

\(\Rightarrow x-1=-3\)

\(\Rightarrow x=-2\)

q) \(\left(x-2\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)

hok tốt!!

28 tháng 9 2023

a)

\(3^x+3^{x+1}+3^{x+2}=117\\ \Leftrightarrow3^x+3.3^x+9.3^x=117\\ 13.3^x=117\\ \Leftrightarrow3^x=9\\ \Leftrightarrow3^x=3^2\\ \Leftrightarrow x=2\)

b)

 \(3+4\left(x-10\right)=3^2+6\\ \Leftrightarrow3+4\left(x-10\right)=15\\ \Leftrightarrow4\left(x-10\right)=12\\ \Leftrightarrow x-10=3\\ \Leftrightarrow x=13\)

28 tháng 9 2023

a) \(3^x+3^{x+1}+3^{x+2}=117\)

\(3^x+3^x.3+3^x.3^2=117\)

\(3^x.\left(1+3+3^2\right)=117\)

\(3^x.13=117\)

\(3^x=9\)

\(x=2\)

b) \(3+4\left(x-10\right)=3^2+6\)

\(3+4x-40=9+6\)

\(4x=15+40-3\)

\(4x=52\)

\(x=13\)

12 tháng 2 2018
https://i.imgur.com/MuRXljM.jpg
12 tháng 2 2018

Phương trình bậc nhất một ẩn

\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\) =\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\) =\(a^2\) b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\) =\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\) =25 c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\) =\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\) =\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\) =... =\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\) \)

d)Tương tự

\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)

=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\)

=\(a^2\)

b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

=\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\)

=\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\)

=\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\)

=25

c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\)

=\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\)

=\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)

=...

=\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)

d)Tương tự

5 tháng 9 2017

cảm ơn

a: \(=\left[a-\left(b-c\right)\right]^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2-2a\left(b-c\right)+\left(b-c\right)^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2-2ab+2ac+2ab-2ac=a^2\)

b: \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2\)

\(=\left(-4\right)^2=16\)

c: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\cdot\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=2^{128}-1\)

d: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{3^{64}-1}{2}\)

Bài 2: 

a: Ta có: \(x\left(2x-1\right)-2x+1=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)