K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2020

https://olm.vn/hoi-dap/detail/54235495497.html

29 tháng 10 2018

biết làm rồi

30 tháng 10 2018

VẬy bạn giải ra cho mọi người xem được ko?

Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!

29 tháng 9 2018

\(\left(x+1\right)\left(y+1\right)=2\)

\(\Leftrightarrow x=\frac{1-y}{1+y}\)

\(P=\sqrt{x^2+y^2-\sqrt{2\left(x^2+1\right)\left(y^2+1\right)}+2}+xy\)

\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-\sqrt{2\left(\left(\frac{1-y}{1+y}\right)^2+1\right)\left(y^2+1\right)}+2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-2.\frac{y^2+1}{y+1}+2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\sqrt{\left(\frac{y^2+1}{y+1}\right)^2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\frac{y^2+1}{y+1}+\left(\frac{1-y}{1+y}\right)y=1\) 

4 tháng 7 2015

mjk mới học thêm toán 9 mấy ngày

20 tháng 7 2017

thay 1 vào mỗi dấu ngoặc là ra thui mà]

13 tháng 10 2019

I am grade 5

16 tháng 9 2019

Khai  triển nó ra,ta có:

\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)

\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)

Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(\Sigma x\cdot\left(y+z\right)\)

Rút gọn dc như vậy rồi chị làm nốt ạ

22 tháng 11 2023

Ta có:

\(x^2+1=x^2+xy+yz+zx\)

           \(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

Tương tự:

\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)

\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

TH1: x,y,z <0

\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)

TH2: x,y,z>0

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)

22 tháng 11 2023

Ta có \(1+z^2=xy+yz+zx+z^2\)

\(=y\left(x+z\right)+z\left(x+z\right)\)

\(=\left(x+z\right)\left(y+z\right)\)

CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)

Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)

 Tương tự như thế, ta được

\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

 Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.

31 tháng 5 2017

AM-GM cho cái gt =>x=y=z=1 thay vào

1 tháng 6 2017

nhầm r bác

19 tháng 9 2017

\(xy+\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2009}\)

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2009\)

\(x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2009\)

\(x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2008\)

\(\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)^2=2008\)

\(\Leftrightarrow A^2=2009\)

\(\Leftrightarrow A=\sqrt{2009}\) khi x, y > 0 hoặc \(A=-\sqrt{2009}\) khi x, y < 0

7 tháng 8 2015

\(x^2+1=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)

Tương tự với mấy cái còn lại, thay vô và rút gọn.

15 tháng 4 2016

kết quả là = 2