Cho a,b,c \(\in\) Z thõa mãn: (a-b)(b-c)(c-a)=a+b+c
chứng minh a+b+c chia hết cho 54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
\(b,a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)
Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)
Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)
mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)
Câu a để nghĩ tiếp
TH1: 3 số \(a,b,c\) có cùng số dư khi chia cho \(3\).
Khi đó \(\left(a-b\right)⋮3,\left(b-c\right)⋮3,\left(c-a\right)⋮3\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)
mà \(\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)suy ra \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮2\)
Suy ra \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮54\Rightarrow\left(a+b+c\right)⋮54\).
TH2: 2 trong 3 số \(a,b,c\)có cùng số dư khi chia cho \(3\), giả sử là \(a,b\).
Khi đó \(VP=\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮3\)mà \(VT=a+b+c⋮̸3\) (loại).
TH3: 3 số \(a,b,c\)có 3 số dư khác nhau khi chia cho \(3\).
khi đó \(VP=\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮̸3\)mà \(VT=a+b+c⋮3\) (loại).
Vậy ta có đpcm.