cho x - \(\sqrt{x+6}\)=\(\sqrt{y+6}-y\)Hãy tìm GTNN của biểu thức P = x + y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)
\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)
\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)
\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))
\(P_{max}=6\) khi \(x=y=3\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)
\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)
\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))
\(\Rightarrow x+y\ge4\)
\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị
Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)
\(\Leftrightarrow\) P = x + y = \(\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)
Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:
\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24
\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0
\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)
\(\Rightarrow\) -4 \(\le\) P \(\le\) 6
Vậy ...
Chúc bn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhớ mang máng câu này hồi trước có giải rồi. Thôi tự vô tìm đi nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ÁP dụng BĐT Mincopxki, ta có:
\(A\ge\sqrt{\left(x+y\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}\)
\(=\sqrt{\left(x+y\right)^2+\dfrac{\left(x+y\right)^2}{\left(xy\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y\right)^2.\dfrac{\left(x+y\right)^2}{\left(xy\right)^2}}}=\sqrt{\dfrac{2\left(x+y\right)^2}{xy}}\) (cô si)
\(\ge\sqrt{\dfrac{2.4xy}{xy}}=\sqrt{8}=2\sqrt{2}\left(Côsi\right)\)
Min \(A=2\sqrt{2}\Leftrightarrow x=y\)
\(x-\sqrt{x+6}=\sqrt{y+6}-y\)
\(\Leftrightarrow x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Rightarrow\left(x+y\right)^2\ge x+y+12\)
\(\Leftrightarrow\left(x+y-4\right)\left(x+y+3\right)\ge0\)
\(\Leftrightarrow x+y\ge4\)
Dấu \(=\)xảy ra khi \(\orbr{\begin{cases}x+6=0\\y+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\y=-6\end{cases}}}\).
Vậy \(minP=4\).