K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

ABC có AB=AC;BC=CB . Vậy A là tâm đối xứng của ABC.

Vậy tam giác ABC là hình tam cân.

Vậy cosA =...

8 tháng 11 2020

Ta có công thức Hê-rông sau: Nếu ∆ABC có BC = a, AB = c, AC = b, diện tích S thì \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)trong đó p là nửa chu vi tam giác đó.

Thật vậy:

Cong ty Cong Nghe Tin hoc Nha truong | School@net - Bài viết | Toán 10-  Nâng Cao - Chương 2 - BÀI 3. HỆ THỨC LƯỢNG TRONG TAM GIÁC

Áp dụng, ta tính được diện tích ∆ABC cân tại A có AB = AC = 5cm, BC = 6cm bằng \(\sqrt{8\left(8-5\right)\left(8-5\right)\left(8-6\right)}=12\left(cm^2\right)\)

Kẻ đường cao CH thì ta có: \(S=\frac{CH.AB}{2}=12\Rightarrow CH=\frac{24}{AB}=4,8\left(cm\right)\)

Áp dụng định lý Py-ta-go vào ∆BCH vuông tại H ta được: \(BH=\sqrt{BC^2-CH^2}=\sqrt{6^2-4,8^2}=3,6\left(cm\right)\)

\(\Rightarrow HA=AB-BH=5-3,6=1,4\left(cm\right)\)

Do đó \(\cos A=\frac{AH}{AC}=\frac{1,4}{5}=0,28\)

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>HB=HC

b: HB=HC=3cm

=>AH=4cm

AH là phân giác của góc BAC

=>góc BAH=góc CAH

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>HM=HN

=>ΔHMN cân tại H

a) Xét ΔABC có 

BM là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)

hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)

Xét ΔABC có 

CN là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)

hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)

hay MN//BC(Đpcm)

b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)

nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)

mà AM+CM=AC(M nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:

\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC có MN//BC(cmt)

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)

hay \(MN=\dfrac{30}{11}\left(cm\right)\)

c) Nửa chu vi của ΔABC là:

\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)

Ta có: ΔANM∼ΔABC(gt)

nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)

\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)

 

15 tháng 2 2022

a, Xét tam giác ABH và tam giác ACH ta có 

AB = AC (gt) 

AH _ chung

^AHB = ^AHC = 900

Vậy tam giác ABH = tam giác ACH ( ch - cgv ) 

b, Xét tam giác ABC cân tại A

AH là đường cao đồng thời là đường trung tuyến 

=> H là trung điểm BC 

c, Do H là trung điểm BC => HB = 6/2 = 3 cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\) 

a: Xét ΔANC và ΔAMB có

góc ACN=góc ABM

góc NAC chung

=>ΔANC đồng dạng với ΔAMB