cho \(a^3+b^3+c^3⋮9\) CMR \(abc⋮3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
-Ta có: a3-a= a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số nguyên liên tiếp nên a.(a-1).(a+1) chia hết cho 3.
=> a3-a chia hết cho 3.
-Chứng minh tương tự ta có b^3-b chia hết cho 3 và c^3-c chia hết cho 3 với mọi b,c thuộc Z.
=> a3+b3+c3 -(a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc Z.
=> nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn lê mạnh quân ko trả lời thì bạn đừng chửi nhé
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta thấy: \(\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}=\Sigma_{cyc}\frac{a^2+bc}{\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}}\)
Ta lại có: \(\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}\le\frac{\left(a^2b+b^2c\right)+\left(bc^2+ca^2\right)+\left(c^2a+ab^2\right)}{3}=\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{\Sigma_{cyc}\left(a^2+bc\right)}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}\)
Nhận thấy: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)=a^3+b^3+c^3+3abc+2\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
Theo Schur: \(a^3+b^3+c^3+3abc\ge\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow A\ge3\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{3\Sigma_{cyc}\left(ab\left(a+b\right)\right)}{\frac{1}{3}\left(a+b+c\right)\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{9}{a+b+c}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(BDT\Leftrightarrow2\left[\dfrac{a^3+b^3+c^2}{abc}-3\right]+9\left[\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2}-3\right]\ge0\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)\sum\left(a-b\right)^2}{abc}+\dfrac{-9\sum\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\sum\left(a-b\right)^2\left(\dfrac{a+b+c}{abc}-\dfrac{9}{a^2+b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\sum\left(a-b\right)^2.\dfrac{\sum\left(a-b\right)^2.\left(a+b+3c\right)}{2abc\left(a^2+b^2+c^2\right)}\ge0\) (đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
\(\Leftrightarrow\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le1\)
Áp dụng BDT \(ab\left(a+b\right)\le a^3+b^3\)thì ta có:
\(\frac{1abc}{a^3+b^3+abc}\le\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
Tương tự ta có:
\(\hept{1\begin{cases}\frac{abc}{b^3+c^3+abc}\le\frac{a}{a+b+c}\\\frac{abc}{c^3+a^3+abc}\le\frac{b}{a+b+c}\end{cases}}\)
Cộng 3 cái trên vế theo vế ta được
\(\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)
\(\Rightarrow\)ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Với mọi a,b >0 có \(a^3+b^3\ge ab\left(a+b\right)\)(tự CM). Dấu "=" xảy ra <=> a=b và a,b>0
<=> \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
<=> \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
CM tương tự cx có :\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ac\left(a+b+c\right)}\)
=>A= \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ac\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}\)
<=> A\(\le\frac{1}{abc}\)
Dấu "=" xảy ra <=> a=b=c>0
Dùng Fermat:
Ta có: \(a^3-a\) chia hết cho 3
Khá dễ dàng để CM định lý Fermat dạng 2 cho 3 số này như sau:
\(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích 3 số nguyên liên tiếp
=> \(a\left(a-1\right)\left(a+1\right)\) chia hết cho 3
=> \(a^3-a\) chia hết cho 3
Hoàn toàn tương tự ta CM được: \(b^3-b\) và \(c^3-c\) chia hết cho 3
=> \(\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\) chia hết cho 3
<=> \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)\) chia hết cho 3
Mà \(a^3+b^3+c^3\) chia hết cho 3 (chia hết cho 9)
=> \(a+b+c\) chia hết cho 3
Mà theo HĐT nâng cao ta có:
\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)
\(=\left(a+b+c\right)\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)\right]+3abc\)
\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]+3abc\)
Vì \(\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\) chia hết cho 3
=> \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]\) chia hết cho 9
=> \(3abc\) chia hết cho 9
=> \(abc\) chia hết cho 3
=> đpcm