giải phương trinh: \(\sqrt{2059-x}+\sqrt{2053-x}+\sqrt{2154-x}=24\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai. Sửa đề \(\sqrt{2059-x}+\sqrt{2035-x}+\sqrt{2154-x}=24\) (1)
Điều kiện: \(x\le2035\)
\(\left(1\right)\Leftrightarrow\left(\sqrt{2059-x}-7\right)+\left(\sqrt{2035-x}-5\right)+\left(\sqrt{2154-x}-12\right)=0\)
\(\Leftrightarrow\frac{2010-x}{\sqrt{2059-x}+7}+\frac{2010-x}{\sqrt{2035-x}+5}+\frac{2010-x}{\sqrt{2154-x}+12}=0\)
\(\Leftrightarrow\left(2010-x\right)\left(\frac{1}{\sqrt{2059-x}+7}+\frac{1}{\sqrt{2035-x}+5}+\frac{1}{\sqrt{2154-x}+12}\right)=0\)
Ta thấy biếu thức \(\frac{1}{\sqrt{2059-x}+7}+\frac{1}{\sqrt{2035-x}+5}+\frac{1}{\sqrt{2154-x}+12}\)luôn dương nên \(2010-x=0\Leftrightarrow x=2010\)(TM)
Vậy ...
ĐKXĐ: \(2059-x\ge0\)
PT đã cho tương đương với:
\(\sqrt{2059-x}+\sqrt{2059-x+2994}+\sqrt{2059-x+95}=24\)(*)
Mà VT của pt(*)\(\ge0+\sqrt{2994}+\sqrt{95}>24=VP\) nên pt(*) vô nghiệm
Vậy pt đã cho vô nghiệm
b) cách khác:
\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)
\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)
\(\Leftrightarrow x=1\)
Đặt căn(x^2+24)=a;căn(x^2+11)=b
ta có a^2-b^2=13
a^2+b^2=2a^2+11
\(\sqrt{1-\sqrt{x^4-x^2}}=x-1\)
\(\sqrt{1-\left|x^2\right|-\left|x\right|}=x-1\)
\(\sqrt{1-x^2-x}=x-1\)
\(x\sqrt{1-x}=x-1\)
\(\sqrt{1-x}=\frac{x-1}{x}\)
\(1-x=\left(\frac{x-1}{x}\right)^2\)
\(1-x=\frac{x^2-1}{x^2}\)
\(1-x=-1\)
\(x=2\)
vay \(x=2\)
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế ta được:
\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)
\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
Tới đây em tự hoàn thành nốt
Xin phép được sửa đề : \(\sqrt{2059-x}+\sqrt{2035-x}+\sqrt{2154-x}=24\)( ĐKXĐ : \(x\le2035\))
\(\Leftrightarrow\sqrt{2059-x}-7+\sqrt{2035-x}-5+\sqrt{2154-x}-12=24-7-5-12\)
\(\Leftrightarrow\left[\left(\sqrt{2059-x}\right)^2-7^2\right]\frac{1}{\sqrt{2059-x}+7}\)\(+\left[\left(\sqrt{2035-x}\right)^2-5^2\right]\frac{1}{\sqrt{2035-x}+5}\)\(+\left[\left(\sqrt{2154-x}\right)^2-12^2\right]\frac{1}{\sqrt{2154-x}+12}=0\)
\(\Leftrightarrow\left(2059-x-49\right)\frac{1}{\sqrt{2059-x}+7}+\left(2035-x-25\right)\frac{1}{\sqrt{2035-x}+5}+\left(2154-x-144\right)\frac{1}{\sqrt{2154-x}+12}=0\)
\(\Leftrightarrow\left(2010-x\right)\frac{1}{\sqrt{2059-x}+7}+\left(2010-x\right)\frac{1}{\sqrt{2035-x}+5}+\left(2010-x\right)\frac{1}{\sqrt{2154-x}+12}=0\)
\(\Leftrightarrow\left(2010-x\right)\left(\frac{1}{\sqrt{2059-x}+7}+\frac{1}{\sqrt{2035-x}+5}+\frac{1}{\sqrt{2154-x}+12}\right)=0\)
Mà \(\frac{1}{\sqrt{2059-x}+7}+\frac{1}{\sqrt{2035-x}+5}+\frac{1}{\sqrt{2154-x}+12}>0\)
\(\Leftrightarrow2010-x=0\Leftrightarrow x=2010\)( TMĐK )
Vậy...