thực hiện phép tính : A=\(\frac{1}{\sqrt{3}-1}-\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=...
ta có
A=\(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
Ta có:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-1\)
Lại có:
\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)
Do đó:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(\Leftrightarrow\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+....+\sqrt{99}-\sqrt{100}\)
\(\Leftrightarrow\sqrt{100}-1=10-1=9\)
b/ Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}.\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào bài toán ta được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{99}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Cả 2 câu là n tự nhiên khác 0 hết nhé
a/ Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Áp đụng vào bài toán được
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{1680}+\sqrt{1681}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{1681}-\sqrt{1680}\)
\(=\sqrt{1681}-\sqrt{1}=41-1=40\)
a) \(4\sqrt{\frac{2}{9}}+\sqrt{2}+\sqrt{\frac{1}{18}}\)
\(=\frac{8\sqrt{2}}{6}+\frac{6\sqrt{2}}{6}+\frac{\sqrt{2}}{6}\)
\(=\frac{15\sqrt{2}}{6}=\frac{5\sqrt{2}}{2}\)
b) \(\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{3-1}-\frac{\sqrt{3}-1}{3-1}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{2}=1\)
\(\frac{1}{\sqrt{3}-1}-\frac{1}{2}=\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{1}{2}\)
\(=\frac{\sqrt{3}+1}{3-1}-\frac{1}{2}=\frac{\sqrt{3}+1}{2}-\frac{1}{2}\)
\(=\frac{\sqrt{3}+1-1}{2}=\frac{\sqrt{3}}{2}\)
\(A=\frac{1}{\sqrt{3}-1}-\frac{1}{2}\)
\(=\frac{1\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{1}{2}\)
\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}\right)^2-1^2}-\frac{1}{2}\)
\(=\frac{\sqrt{3}+1}{2}-\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2}\)