K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2020

\(\left(2x+1\right)^2-4x\left(x+3\right)=9\)

\(4x^2+4x+1-4x^2-12x=9\)

\(-8x+1=9\)

\(-8x=9-1\)

\(-8x=8\)

\(x=8\div\left(-8\right)\)

\(x=-1\)

23 tháng 5 2020

Cho đa thức

P(x)= x mũ 2 + 2x mũ 2 +1 (1)

Thay P(-1) vào đa thức (1) , ta có :

P= \((-1)^2 +2.(-1) ^3\)

P= \(1+ (-2)\)

P= \(-1\)

Thay P(\(\dfrac{1}{2}\)) vào đa thức (1) , ta có :

\(P= (\dfrac{1}{2})^2 +2.(\dfrac{1}{2})^3\)

\(P= \dfrac{1}{4} + \dfrac{1}{4}\)

\(P=\dfrac{1}{2}\)

Q(x)=x mũ 4 +4x mũ 3 +2x mũ 2 trừ 4x+ 1. (2)

Thay Q(-2) vào đa thức (2) , ta có :

Q =\((-2)^4 +4.(-2)^3 +2.(-2)^2-4(-2)+1\)

\(Q = 16-32+8+8+1\)

\(Q= 1\)

Thay Q(1) vào đa thức (2) , ta có:

\(Q= \) \(1^4+4.1^3+2.1^2-4.1+1\)

\(Q= 1+ 4+2-4+1\)

\(Q= 4\)

Tính P(-1) ; P(1/2) ; Q(-2) ; Q(1)

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(3x-2y\right)^2-3\)

\(=\left(3x-2y-\sqrt{3}\right)\left(3x-2y+\sqrt{3}\right)\) (Bước này chắc không cần)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

\(=\left(x+2-\sqrt{3}\right)\left(x+2+\sqrt{3}\right)\)

(Bước này chắc không cần)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=\left(\dfrac{1}{2}x\right)^2+x+1-1\)

\(=\left(\dfrac{1}{2}x+1\right)^2-1\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=4a^2+6a^2+4b^2+b^2+12ab+4a-6b+15\)

\(=\left(6a^2+b^2+12ab\right)+4a+4a^2-6b+4b^2+15\)

\(=\left(6a+b\right)^2+4a\left(1+a\right)-2b\left(3+2b\right)+15\)

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(9x^2-12xy+4y^2\right)-3\)

\(=\left(3x-2y\right)^2-3\)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=x\left(\dfrac{1}{4}x+1\right)\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)

\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)

\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)

Vậy ...

1 tháng 9 2020

\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)

\(\Rightarrow-x=5\)

\(\Rightarrow x=-5\)

     \(\text{Vậy x=-5}\)

\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)

\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)

\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)

\(\Rightarrow-16x-8=7\)

\(\Rightarrow-16x=15\)

\(\Rightarrow x=\frac{-15}{16}\)

      \(\text{Vậy }x=\frac{-15}{16}\)

\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)

\(\Rightarrow-9+8x-1=8\)

\(\Rightarrow8x=18\)

\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)

      \(\text{Vậy }x=\frac{9}{4}\)

\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)

23 tháng 10 2020

ủa tìm thương của f(x) chia cho g(x) hay sao ak?

25 tháng 12 2020

ko có biết

21 tháng 9 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 - 22 = 0

<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0

<=> ( x - 5 )( x - 1 ) = 0

<=> x = 5 hoặc x = 1

b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22

<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22

<=> 4x2 + 12x + 9 - 4x2 + 1 = 22

<=> 12x + 10 = 22

<=> 12x = 12

<=> x = 1

c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16

<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16

<=> 16x2 - 9 - 16x2 + 40x - 25 = 16

<=> 40x - 34 = 16

<=> 40x = 50

<=> x = 50/40 = 5/4

d) x3 - 9x2 + 27x - 27 = -8

<=> ( x - 3 )3 = -8

<=> ( x - 3 )3 = (-2)3

<=> x - 3 = -2

<=> x = 1 

e) ( x + 1 )3 - x2( x + 3 ) = 2

<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2

<=> 3x + 1 = 2

<=> 3x = 1

<=> x = 1/3

f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5

<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5

<=> x3 + 12x - 8 - x3 + x = 5

<=> 13x - 8 = 5

<=> 13x = 13

<=> x = 1

21 tháng 9 2020

a) \(\left(x-3\right)^2-4=0\)

=> \(\left(x-3\right)^2-2^2=0\)

=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)

=> \(\left(x-5\right)\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)

=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)

=> \(4x^2+12x+9-4x^2+1=22\)

=> \(12x+9+1=22\)

=> \(12x+10=22\)

=> 12x = 12

=> x = 1

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)

=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)

=> \(16x^2-9-16x^2+40x-25=16\)

=> \(-9+40x-25=16\)

=> \(40x=16+25-\left(-9\right)=16+25+9=50\)

=> x = 50/40 = 5/4

d) \(x^3-9x^2+27x-27=-8\)

=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)

=> \(\left(x-3\right)^3=-8\)

=> \(\left(x-3\right)^3=\left(-2\right)^3\)

=> x - 3  = -2 => x = 1

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)

=> \(3x+1=2\)

=> \(3x=1\)=> x = 1/3

f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)

=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)

=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)

=> \(\left(12x+x\right)-8=5\)

=> 13x  = 13

=> x = 1