tìm x
( 2x + 1 ) mũ 2 - 4x ( x + 3 ) = 9
mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức
P(x)= x mũ 2 + 2x mũ 2 +1 (1)
Thay P(-1) vào đa thức (1) , ta có :
P= \((-1)^2 +2.(-1) ^3\)
P= \(1+ (-2)\)
P= \(-1\)
Thay P(\(\dfrac{1}{2}\)) vào đa thức (1) , ta có :
\(P= (\dfrac{1}{2})^2 +2.(\dfrac{1}{2})^3\)
\(P= \dfrac{1}{4} + \dfrac{1}{4}\)
\(P=\dfrac{1}{2}\)
Q(x)=x mũ 4 +4x mũ 3 +2x mũ 2 trừ 4x+ 1. (2)
Thay Q(-2) vào đa thức (2) , ta có :
Q =\((-2)^4 +4.(-2)^3 +2.(-2)^2-4(-2)+1\)
\(Q = 16-32+8+8+1\)
\(Q= 1\)
Thay Q(1) vào đa thức (2) , ta có:
\(Q= \) \(1^4+4.1^3+2.1^2-4.1+1\)
\(Q= 1+ 4+2-4+1\)
\(Q= 4\)
Tính P(-1) ; P(1/2) ; Q(-2) ; Q(1)
Giải:
1) \(9x^2-12xy+4y^2-3\)
\(=\left(3x-2y\right)^2-3\)
\(=\left(3x-2y-\sqrt{3}\right)\left(3x-2y+\sqrt{3}\right)\) (Bước này chắc không cần)
2) \(x^2+4x+1\)
\(=x^2+4x+4-3\)
\(=\left(x+2\right)^2-3\)
\(=\left(x+2-\sqrt{3}\right)\left(x+2+\sqrt{3}\right)\)
(Bước này chắc không cần)
3) \(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\)
4) \(x^2+6x+15\)
\(=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
5) \(x^2-x+\dfrac{1}{3}\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)
6) \(\dfrac{1}{4}x^2+x\)
\(=\left(\dfrac{1}{2}x\right)^2+x+1-1\)
\(=\left(\dfrac{1}{2}x+1\right)^2-1\)
7) \(3x^2+2x+1\)
\(=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
8) \(2x^2-2x+1\)
\(=x^2-2x+1+x^2\)
\(=\left(x-1\right)^2+x^2\)
9) \(10a^2+5b^2+12ab+4a-6b+15\)
\(=4a^2+6a^2+4b^2+b^2+12ab+4a-6b+15\)
\(=\left(6a^2+b^2+12ab\right)+4a+4a^2-6b+4b^2+15\)
\(=\left(6a+b\right)^2+4a\left(1+a\right)-2b\left(3+2b\right)+15\)
Giải:
1) \(9x^2-12xy+4y^2-3\)
\(=\left(9x^2-12xy+4y^2\right)-3\)
\(=\left(3x-2y\right)^2-3\)
2) \(x^2+4x+1\)
\(=x^2+4x+4-3\)
\(=\left(x+2\right)^2-3\)
3) \(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\)
4) \(x^2+6x+15\)
\(=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
5) \(x^2-x+\dfrac{1}{3}\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)
6) \(\dfrac{1}{4}x^2+x\)
\(=x\left(\dfrac{1}{4}x+1\right)\)
7) \(3x^2+2x+1\)
\(=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
8) \(2x^2-2x+1\)
\(=x^2-2x+1+x^2\)
\(=\left(x-1\right)^2+x^2\)
9) \(10a^2+5b^2+12ab+4a-6b+15\)
\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)
\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)
\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)
Vậy ...
\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)
\(\Rightarrow-x=5\)
\(\Rightarrow x=-5\)
\(\text{Vậy x=-5}\)
\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)
\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)
\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)
\(\Rightarrow-16x-8=7\)
\(\Rightarrow-16x=15\)
\(\Rightarrow x=\frac{-15}{16}\)
\(\text{Vậy }x=\frac{-15}{16}\)
\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)
\(\Rightarrow-9+8x-1=8\)
\(\Rightarrow8x=18\)
\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)
\(\text{Vậy }x=\frac{9}{4}\)
\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> x = 5 hoặc x = 1
b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22
<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22
<=> 4x2 + 12x + 9 - 4x2 + 1 = 22
<=> 12x + 10 = 22
<=> 12x = 12
<=> x = 1
c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16
<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16
<=> 16x2 - 9 - 16x2 + 40x - 25 = 16
<=> 40x - 34 = 16
<=> 40x = 50
<=> x = 50/40 = 5/4
d) x3 - 9x2 + 27x - 27 = -8
<=> ( x - 3 )3 = -8
<=> ( x - 3 )3 = (-2)3
<=> x - 3 = -2
<=> x = 1
e) ( x + 1 )3 - x2( x + 3 ) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 1
<=> x = 1/3
f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5
<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5
<=> x3 + 12x - 8 - x3 + x = 5
<=> 13x - 8 = 5
<=> 13x = 13
<=> x = 1
a) \(\left(x-3\right)^2-4=0\)
=> \(\left(x-3\right)^2-2^2=0\)
=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)
=> \(\left(x-5\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)
=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)
=> \(4x^2+12x+9-4x^2+1=22\)
=> \(12x+9+1=22\)
=> \(12x+10=22\)
=> 12x = 12
=> x = 1
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)
=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)
=> \(16x^2-9-16x^2+40x-25=16\)
=> \(-9+40x-25=16\)
=> \(40x=16+25-\left(-9\right)=16+25+9=50\)
=> x = 50/40 = 5/4
d) \(x^3-9x^2+27x-27=-8\)
=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)
=> \(\left(x-3\right)^3=-8\)
=> \(\left(x-3\right)^3=\left(-2\right)^3\)
=> x - 3 = -2 => x = 1
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)
=> \(3x+1=2\)
=> \(3x=1\)=> x = 1/3
f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)
=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)
=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)
=> \(\left(12x+x\right)-8=5\)
=> 13x = 13
=> x = 1
\(\left(2x+1\right)^2-4x\left(x+3\right)=9\)
\(4x^2+4x+1-4x^2-12x=9\)
\(-8x+1=9\)
\(-8x=9-1\)
\(-8x=8\)
\(x=8\div\left(-8\right)\)
\(x=-1\)