K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

a)xét tam giác ABM và tam giác DCM có:

BN=CM(GT)

góc BMA=góc CMD(đđ)

AM-DM(GT)

\(\Rightarrow\)tam giác ABM=tam giác DCM(c.g.c)

1 tháng 3 2018

b)theo câu a: tam giác ABM=tam giác DCM

\(\Rightarrow\)góc BAM= góc MDC(2 góc tương ứng)

mà đây là cặp góc so le trong

\(\Rightarrow\)AB//CD

\(\Rightarrow\)góc BAC= góc ACD=90 độ\(\Rightarrow\)CD \(\perp\)AC

c) xét tam giác AHC và tam giác EHC có:

AH=EH(GT)

góc AHC=góc EHC=90 độ

HC chung

\(\Rightarrow\)tam giác AHC = tam giác EHC(c.g.c)

\(\Rightarrow\)CA=CE(2 cạnh tương ứng)

\(\Rightarrow\)tam giác CAE cân tại C

a: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có

BM chung

góc ABM=góc HBM

=>ΔBAM=ΔBHM

b: Xét ΔBDC có BA/BD=BH/BC

nên AH//DC

24 tháng 7 2019

A C B H D E F

24 tháng 7 2019

a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)

      Xét \(\Delta\)AHD và \(\Delta\)FHA có:

        \(\widehat{AHD}=\widehat{FHA}=90^o\)

           \(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)

\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)

\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)

mà \(\widehat{ADH}+\widehat{HAD}=90^o\)

nên \(\widehat{FAH}+\widehat{HAD}=90^o\)

hay  \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A

13 tháng 3 2018

A D B C H M E

a/ Xét 2 tam giác MDC và MAB có MA=MD (gt), MB=MC (gt), góc DMC=góc AMB (đối đỉnh)

=> tam giác MDC = tam giác MAB

=> Góc CBA=góc BCD (Góc tương ứng)

Xét \(\Delta ABC\)\(\widehat{CBA}+\widehat{ACB}=90^0\)(Tính chất Tam giác vuông)

=> \(\widehat{BCD}+\widehat{ACB}=90^0=\widehat{ACD}\) => \(CD\perp AC\)

b/ Xét 2 tam giác vuông CHE và CHA có: CH (chung); HE=HA (gt); Tam giác vuông tại H

=> \(\Delta CHE=\Delta CHA\)=> CA=CE (2 cạnh tương ứng) => \(\Delta CAE\)cân tại C