K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

1. Sửa lại đề là \(8^7-2^{18}⋮14\)

Ta có:

\(8^7-2^{18}=\left(2^3\right)^7-2^{18}\)

\(=2^{21}-2^{18}\)

\(=2^{18}.\left(2^3-1\right)\)

\(=2^{18}.7\)

\(=2^{17}.2.7\)

\(=2^{17}.14\)

\(14⋮14\) nên \(2^{17}.14⋮14\)

\(\Rightarrow8^7-2^{18}⋮14\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 10 2019

bạn ơi câu 2 bạn bt làm ko

6 tháng 11 2018

\(x:y:z=a:b:c\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\left(x+y+z\right)^2\)

Mặt khác \(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)

Suy ra đpcm

10 tháng 4 2022

tham khảo

Ta có x:a=y:b=z:c=x+y+z:a+b+c=x+y+z( vì a+b+c=1)

do đó (x+y+z)^2=x^2:a^2=y^2:b^2=z^2:c^2=x^2+y^2+z^2:a^2+b^2+ c^2=x^2+y^2+z^2( vì a^2+b^2+c^2)

Vậy (x+y+z)^2=x^2+y^2+z^2

10 tháng 4 2022

bạn ơi sai r

 

10 tháng 4 2022

-Có: \(x:y:z=a:b:c\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{2}\)

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{2}\)

\(\Rightarrow\dfrac{\left(x+y+z\right)^2}{4}=\dfrac{x^2+y^2+z^2}{2}\)

\(\Rightarrow\left(x+y+z\right)^2=2x^2+2y^2+2z^2\left(đpcm\right)\)

10 tháng 4 2022
Ta có x:a=y:b=z:c=x+y+z:a+b+c=x+y+z( vì a+b+c=1)do đó (x+y+z)^2=x^2:a^2=y^2:b^2=z^2:c^2=x^2+y^2+z^2:a^2+b^2+ c^2=x^2+y^2+z^2( vì a^2+b^2+c^2)Vậy (x+y+z)^2=x^2+y^2+z^2
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

30 tháng 4 2020

mình nghĩ phải sửa dấu thành \(\ge\)

30 tháng 4 2020

BĐT cần chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Ta có : \(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

Tương tự : \(b^2c+b^2c+\frac{1}{bc^2}\ge3b;c^2a+c^2a+\frac{1}{ca^2}\ge3c\)

Cộng lại theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Dấu "=" xảy ra khi a = b = c = 1

NV
2 tháng 4 2021

\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)

\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)

\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

3 tháng 9 2018

hình như thiếu cái gì đó

Đề bài đủ rồi bạn nhé.

Bn có thể tham khảo link này:

https://olm.vn/hoi-dap/detail/9056136271.html

#Hok_tốt

29 tháng 8 2019

Bạn tham khảo :

Câu hỏi của Hiền Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của Hiền Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Hoặc gõ lick này nha : https://olm.vn/hoi-dap/detail/9056136271.html