K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:

1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$

PT $\Leftrightarrow x^2+5x+1=x+1$

$\Leftrightarrow x^2+4x=0$

$\Leftrightarrow x(x+4)=0$

$\Rightarrow x=0$ hoặc $x=-4$

Kết hợp đkxđ suy ra $x=0$

2. ĐKXĐ: $x\leq 2$

PT $\Leftrightarrow x^2+2x+4=2-x$

$\Leftrightarrow x^2+3x+2=0$

$\Leftrightarrow (x+1)(x+2)=0$

$\Leftrightarrow x+1=0$ hoặc $x+2=0$

$\Leftrightarrow x=-1$ hoặc $x=-2$
3.

ĐKXĐ: $-2\leq x\leq 2$

PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$

$\Leftrightarrow 2x+4=2-x$

$\Leftrightarrow 3x=-2$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

28 tháng 11 2021

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

19 tháng 9 2021

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

19 tháng 9 2021

lamf nốt 4

 

NV
24 tháng 11 2018

Đặt \(\sqrt{x}=a\ge0\) ta được:

\(a^4-a^3-2a^2-2a+4=0\)

\(\Leftrightarrow a^4+2a^3+2a^2-3a^3-6a^2-6a+2a^2+4a+4=0\)

\(\Leftrightarrow a^2\left(a^2+2a+2\right)-3a\left(a^2+2a+2\right)+2\left(a^2+2a+2\right)=0\)

\(\Leftrightarrow\left(a^2-3a+2\right)\left(a^2+2a+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a^2-3a+2=0\\a^2+2a+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=1;x=4\)

NV
23 tháng 11 2019

a/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x+5+2\sqrt{x^2+5x+4}\)

\(\Leftrightarrow\sqrt{x^2+9x}+2=\sqrt{x^2+5x+4}\)

\(\Leftrightarrow x^2+9x+4+4\sqrt{x^2+9x}=x^2+5x+4\)

\(\Leftrightarrow\sqrt{x^2+9x}=-4x\)

Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\)

Dấu "=" xảy ra khi và chỉ khi \(x=0\)

b/ Lại 1 câu sai đề nữa, dễ dàng chứng minh pt này vô nghiệm:

\(\Leftrightarrow x^2-2x+4x-\sqrt{x^2-2x+24}+\frac{1}{4}+x^2+\frac{183}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x^2-2x+24}-\frac{1}{2}\right)^2+x^2+\frac{183}{4}=0\)

Phương trình hiển nhiên vô nghiệm do vế trái dương

24 tháng 11 2017

\(\sqrt{x-5}+\sqrt{x-3}-2\sqrt{x^2+2x-8}+4=0\left(1\right)\\ \Leftrightarrow\sqrt{x-5}+\sqrt{x-3}+4=2\sqrt{x^2+2x-8}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x-5\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x\ge3\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-5}+\sqrt{x-3}+4=2\sqrt{x^2+2x-8}\\ \Leftrightarrow\left(\sqrt{x-5}\right)^2+\left(\sqrt{x-3}\right)^2+4^2=\left(2\sqrt{x^2+2x-8}\right)^2\\ \Leftrightarrow x-5+x-3+16=4.\left(x^2+2x-8\right)\\ \Leftrightarrow x-5+x-3+16=4x^2+8x-32\\ \Leftrightarrow x-5+x-3+16-4x^2-8x+32=0\\ \Leftrightarrow-4x^2-6x+40=0\)

Ta có: \(\Delta=b^2-4ac=\left(-6\right)^2-4.\left(-4\right).40=676\)

\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-6\right)+\sqrt{676}}{2.\left(-4\right)}=-4\left(nhận\right)\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-6\right)-\sqrt{676}}{2.\left(-4\right)}=\dfrac{5}{2}=2,5\left(loại\right)\end{matrix}\right.\)

Vậy phương trình (1) không có nghiệm thỏa mãn.

24 tháng 11 2017

Mình nhầm chỗ \(x_1=-4\) là loại mà mình nhấn nhầm là nhận!