cho tam giác ABC vuông tại A (AB<AC) đường cao AH, đường trung tuyến AM. Gọi E,F lần lượt là hình chiếu vuông góc của H trên AB, AC, trên tia đối EH lấy điểm P sao cho FP=EH, trên tia đối FH lấy Q sao cho FH=FQ
a) Chứng minh rằng P, A, Q thẳng hàng
b) Chứng minh tứ giác BPQC là hình thang vuông và PB+QC=BC
c)Chứng minh AM vuông góc EF
d) gọi d là đường thẳng thay đổi đi qua A, nhưng ko cắt cạnh BC của tam giác ABC. Gọi X,Y lần lượt là hình chiếu vuông góc của B,C trên d. Tìm vị trí của d để chu vi tứ giác BXYC lớn nhất
"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e
sai thế nào đc