Cho hình bình hành ABCD. trên tia đối của tia AD lấy E, trên đia đối của CD lấy F sao cho AE = AD và CF = CD.
a) Chứng minh: Tứ giác ABEC là hình bình hành
b) Ba điểm E, B, F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF
Câu thứ nhất sai đề bạn ạ vì ko có tia đối của tia AD
1:
ta có:ABCD là hình thoi
=>\(\widehat{BAD}=\widehat{BCD};\widehat{ABC}=\widehat{ADC}\)
Ta có: \(\widehat{BAD}+\widehat{EAH}=180^0\)(hai góc kề bù)
\(\widehat{BCD}+\widehat{FCD}=180^0\)(hai góc kề bù)
mà \(\widehat{BAD}=\widehat{BCD}\)
nên \(\widehat{EAH}=\widehat{FCD}\)
Ta có: \(\widehat{ABC}+\widehat{EBC}=180^0\)(hai góc kề bù)
\(\widehat{ADC}+\widehat{ADG}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ADC}\)
nên \(\widehat{EBC}=\widehat{ADG}\)
Ta có: \(DA+AH=DH\)
\(AB+BE=AE\)
\(BC+CF=BF\)
\(CD+DG=CG\)
mà DA=AB=BC=CD và AH=BE=CF=DG
nên DH=AE=BF=CG
Xét ΔHAE và ΔFCG có
HA=FC
\(\widehat{HAE}=\widehat{FCG}\)
AE=CG
Do đó: ΔHAE=ΔFCG
=>HE=FG
Xét ΔHDG và ΔFBE có
DH=BF
\(\widehat{HDG}=\widehat{BFE}\)
DG=BE
Do đó: ΔHDG=ΔFBE
=>HG=FE
Xét tứ giác GHEF có
GH=EF
GF=HE
Do đó: GHEF là hình bình hành
2: Gọi O là giao điểm của AC và BD
Ta có: ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AC cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểmcủa HF
Ta có: EHGF là hình bình hành
=>EG cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của HF
nên O là trung điểm của EG
=>Hình bình hành EHGF và hình thoi ABCD có chung tâm
1: DH=DA+AH
CG=CD+DG
BF=BC+CF
AE=AB+BE
mà DA=CD=BC=AB và AH=DG=CF=BE
nên DH=CG=BF=AE
góc ADG=180 độ-góc ADC
góc EBF=180 độ-góc ABC
mà góc ADC=góc ABC
nên góc ADG=góc EBF
góc EAB=180 độ-góc BAD
góc GCF=180 độ-góc BCD
mà góc BAD=góc BCD
nên góc EAB=góc GCF
Xét ΔHDG và ΔFBE có
HD=FB
góc HDG=góc FBE
DG=BE
Do đó: ΔHDG=ΔFBE
=>HG=FE
Xét ΔHAE và ΔFCG có
HA=FC
góc HAE=góc FCG
AE=CG
Do đó: ΔHAE=ΔFCG
=>HE=FG
Xét ΔADG và ΔCBE có
AD=CB
góc ADG=góc CBE
DG=BE
Do đó: ΔADG=ΔCBE
=>AG=CE
Xét tứ giác EHGF có
EH=FG
EF=GH
Do đó: EHGF là hình bình hành
2:
Gọi O là giao của AC và BD
ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AGCE có
AG=CE
AE=CG
Do đó: AGCE là hình bình hành
=>AC cắt GE tại trung điểm của mỗi đường
=>O là trung điểm của GE
GHEF là hình bình hành
=>GE cắt HF tại trung điểm của mỗi đường
=>O là trung điểm của HF
=>ĐPCM
3:
ABCD là hình vuông
=>góc BAD=góc ADC=90 độ
Xét ΔHAE vuông tại A và ΔGDH vuông tại D có
HA=GD
AE=DH
Do đó: ΔHAE=ΔGDH
=>HE=GH
Xét hình bình hành EHGF có HE=GH
nên EHGF là hình thoi
a: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
giúp em với
A
BCDFEOa, Vì tứ giác ABCD là hình hình hành
⇒ ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪AD // BCAD = BC AB = CDAB // CD{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC{AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD{AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
⎧⎩⎨⎪⎪CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF
⇒ CA, ED, FB đồng quy (tại trọng tâm của ΔCEF) (đpcm)
học tốt ;-;