K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét △MIN và △QMN có

Iˆ=Mˆ(=900)I^=M^(=900)

NˆchungN^chung

=>△MIN ∼ △QMN (g.g)(đpcm)

b) vì MNPQ là hình chữ nhật

=> NM//PQ

=> N1ˆ=Q1ˆ(SLT)N1^=Q1^(SLT)

XÉT △MIN và △MPQ có

Iˆ=Pˆ(=900)I^=P^(=900)

N1ˆ=Q1ˆ(cmt)N1^=Q1^(cmt)

=> △MIN ∼ △MPQ (g.g)(đpcm)

c xét △MIQ và △ NMQ có

Iˆ=Mˆ(=900)I^=M^(=900)

QˆchungQ^chung

=> △MIQ ∼ △ NMQ (g.g)

=> MQQN=IQMQMQQN=IQMQ

=> MQ.MQ=QN.QI

=> MQ2=QN.QI(đpcm)

d>xét △MNQ có Mˆ=900M^=900 theo đl pi ta go ta có

QN2 =QM2+MN2

⇔ QN2=32+42

⇔ QN2=25

⇔ QN=5 (cm)

vì MNPQ là hình cữ nhật

=> QM=NP=3cm

vì △MIQ ∼ △ NMQ (theo c)

=> MINM=MQNQ=MI4=35MINM=MQNQ=MI4=35

=> MI= 4.35=2,4(cm)4.35=2,4(cm)

vậy MI=2,3 cm

 Mình làm đâị hoing bt đúng ko nhé! chúc bạn học tốt!

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK

1 tháng 11 2016

d) S = 6 x 8 :2 = 24

mà s cũng có thể = MK x 10 : 2 = 24   ( MK là đường cao)

=> MK = 4,8

e) theo py ta go

=> NK = căn 41,24

MK = căn 69,24

g) theo tính chất tam giác vuông 

=> MD = ND = DP = 1/2NP = 10 : 2 = 5

h) theo py ta go 

=> KD = 5 - căn 41,24 = ...

bài này mik chưa chắc chắn đâu vì mik thấy số lẻ quá nhưng mà 100% cách làm là đúng nhng7 hơi tắt mog bn thông cảm

nhớ

1 tháng 11 2016

a) tứ giác MEKH co ba góc vuông suy ra là hcn

b)do tam giác MNP có M=900 áp dụng định lý py ta go để làm

c)SMNP =chiều cao nhân cạnh đáy chia hai

d)áp dụng định lý py-ta-go

a: Xét tứ giác MHKE có 

\(\widehat{MHK}=\widehat{MEK}=\widehat{HME}=90^0\)

Do đó: MHKE là hình chữ nhật

b: \(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)

c: \(S_{MNP}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

d: \(MK=\dfrac{MN\cdot MP}{NP}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)

e: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{6^2}{10}=3.6\left(cm\right)\\KP=10-3.6=6.4\left(cm\right)\end{matrix}\right.\)

a: \(NQ=\sqrt{16^2+12^2}=20\left(cm\right)\)

NP/NQ=12/20=3/5

b: Xét ΔMHN vuông tại H và ΔNPQ vuông tại P co

góc MNH=góc NQP

=>ΔMHN đồg dạng với ΔNPQ

\(MH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

c: Xét ΔMQN vuông tại M có MH là đường cao

nên MQ^2=QH*QN

19 tháng 7 2017

BAN TU VE HINH NHA 

a, trong tam giác MNK có \(\sin N=\frac{4}{5}\Rightarrow GOCN\approx53\)

ap dung dl pitago vao tam giac vuong MNK co \(NK^2+MK^2=NM^2\Rightarrow NK^2=5^2-4^2=3^2\Rightarrow NK=3\)

B, ap dung he thuc luong vao tam giac vuong MNK co \(MK^2=MC\cdot MN\)

                                               tam giac vuong MKP co\(MK^2=MD\cdot MP\)

 tu day suy ra  MC*MN=MD*MP

C, ta co \(NP=NK+KP\)

ma \(NK=MK\cdot cotN\) \(KP=MK\cdot cotP\)

suy ra \(NP=MK\cdot\left(cotN+cotP\right)\)

D,  ta co  trong tam giac vuong MDK \(MD=MK\cdot cosM=4\cdot cos30=2\sqrt{3}\)

ma trong tam giac vuong MKP c o\(MK^2=MD\cdot MP\Rightarrow MP=\frac{4^2}{2\sqrt{3}}=\frac{8\sqrt{3}}{3}\)

 lai co \(MD+DP=MP\Rightarrow DP=\frac{2\sqrt{3}}{3}\)

a: PQ=căn 8^2+15^2=17cm

PA=MP^2/PQ=8^2/17=64/17cm

b: góc MBA=góc MCA=góc CMB=90 độ

=>MBAC là hình chữ nhật

=>MA=BC

13 tháng 3 2022

các bạn giải nhanh gíup mình với