K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 10 2020

5 chữ số pb muốn có tổng lẻ thì số chữ số lẻ phải lẻ

Tập đã cho chỉ có 4 chữ số lẻ nên có 2 TH xảy ra: (3 lẻ 2 chẵn) và (1 lẻ 4 chẵn)

Chọn khá dễ dàng

NV
28 tháng 10 2020

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Rightarrow\frac{sinx}{cosx}.\frac{1}{cos^2x}+\frac{1}{cos^2x}-4tan^3x=0\)

\(\Leftrightarrow tanx\left(1+tan^2x\right)+1+tan^2x-4tan^3x=0\)

Đến đây chắc là ko cần làm nữa

5 tháng 9 2021

1.

\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

5 tháng 9 2021

2.

\(\left|cosx-sinx\right|+2sin2x=1\)

\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)

\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)

\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)

29 tháng 7 2020

\(a\text{) }sin^3x+cos^3x=sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)=sinx+cosx\\ \Leftrightarrow-\frac{1}{2}sin2x\left(sinx+cosx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=-cosx=sin\left(x-\frac{\pi}{2}\right)\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{2}-x+a2\pi\\2x=b\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+a\pi\\x=\frac{b\pi}{2}\end{matrix}\right.\)

\(\text{b) }sin^3x+2sin^2x\cdot cosx-3cos^3x=0\\ \Leftrightarrow\left(sin^3x-cos^3x\right)+2cosx\cdot\left(sin^2x-cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(sinx\cdot cosx+1\right)+\left(sinx-cosx\right)\left(2sinx\cdot cosx+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(3sinx\cdot cosx+1+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(\frac{3}{2}sin2x+2+cos2x\right)=0\)

Với \(sinx-cosx=0\)

\(\Leftrightarrow sinx=cosx=sin\left(\frac{\pi}{2}-x\right)\\ \Leftrightarrow x=\frac{\pi}{2}-x+a2\pi\\ \Leftrightarrow x=\frac{\pi}{4}+a\pi\)

Với \(\frac{3}{2}sin2x+2+cos2x=0\)

\(\Leftrightarrow sin^22x+\left(\frac{3}{2}sin2x+2\right)^2=1\left(VN\right)\)

29 tháng 7 2020

\(\text{c) }3cos^4x-4cos^2x\cdot sin^2x-sin^4x=0\)

Nhận thấy sinx=0 không là nghiệm pt.

Chia cả 2 vế cho sin4x ta được

\(pt\Leftrightarrow\frac{3cos^4x}{sin^4x}-\frac{4cos^2x}{sin^2x}-1=0\\ \Leftrightarrow3cot^4x-4cot^2x-1=0\\ \Leftrightarrow cot^2x=\frac{2+\sqrt{7}}{3}\\ \Leftrightarrow cotx=\pm\sqrt{\frac{2+\sqrt{7}}{3}}\\ \Leftrightarrow x=arccot\left(\pm\sqrt{\frac{2+\sqrt{7}}{3}}\right)+k2\pi\)

d) kiểm tra đề.

22 tháng 10 2019

1   +   sin x   -   cos x   -   sin 2 x   +   2 cos 2 x   =   0   ( 1 )     T a   c ó :     1   -   sin 2 x   =   sin x   -   cos x 2     ⇔   2 cos 2 x   =   2 ( cos 2 x   -   sin 2 x )   =   - 2 ( sin x   -   cos x ) ( sin x   +   cos x )     V ậ y   ( 1 )   ⇔   ( sin x   -   cos x ) ( 1   +   sin x   -   cos x   -   2 sin x   -   2 cos x )   =   0     ⇔   ( sin x   -   cos x ) ( 1   -   sin x   -   3 cos x )   =   0

Giải sách bài tập Toán 11 | Giải sbt Toán 11

16 tháng 6 2021

\(sin^3x+cos^3x-sinx-cosx=cos2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)-\left(sinx+cosx\right)-\left(cos^2x-sin^2x\right)\)\(=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(sinx+cosx\right)-\left(cosx+sinx\right)\left(cosx-sinx\right)=0\)​​

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx-cosx-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\sinx-cosx-sinx.cosx=0\left(2\right)\end{matrix}\right.\)

TH1: (1)\(\Leftrightarrow\sqrt{2}.sin\left(x+\dfrac{\pi}{4}\right)=0\)\(\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

TH2: Đặt \(t=sinx-cosx\) ;\(t\in\left(-2;2\right)\)

\(\Rightarrow\dfrac{t^2-1}{2}=-sinx.cosx\)

Pt (2)\(\Rightarrow t+\dfrac{t^2-1}{2}=0\)\(\Leftrightarrow t^2+2t-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\left(tm\right)\\t=-1-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow sinx-cosx=-1+\sqrt{2}\)\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=-\sqrt{2}+1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1-\sqrt{2}}{\sqrt{2}}\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arc.cos\dfrac{1-\sqrt{2}}{2}+k2\pi\\x=\dfrac{-\pi}{4}-arc.cos\dfrac{1-\sqrt{2}}{2}+k2\pi\end{matrix}\right.\)(\(k\in\)\(Z\))

Vậy...

 

 

16 tháng 6 2021

undefinedundefined

20 tháng 8 2021

a) Đặt \(sinx+cosx=t\left(\left|t\right|\le\sqrt{2}\right)\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

=> pt có dạng: \(t=\sqrt{2}\left(t^2-1\right)\Leftrightarrow\sqrt{2}t^2-t-\sqrt{2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{-\sqrt{2}}{2}\\t=\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}sinx+cosx=\frac{-\sqrt{2}}{2}\\sinx+cosx=\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}sin\left(x+\frac{\pi}{4}\right)=\frac{-1}{2}\\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{\pi}{4}=\frac{-\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{7\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+2k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-5\pi}{12}+2k\pi\\x=\frac{11\pi}{12}+2k\pi\\x=\frac{\pi}{4}+2k\pi\end{cases}}\left(k\inℤ\right)}\)

15 tháng 8 2021

ĐK: \(x\ne\dfrac{\pi}{4}+k\pi;x\ne\dfrac{k\pi}{2}\)

\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}=0\)

\(\Leftrightarrow2sin^2x+cos4x-cos2x=0\)

\(\Leftrightarrow2sin^2x-1+cos4x-cos2x+1=0\)

\(\Leftrightarrow2cos^22x-2cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được \(x=-\dfrac{\pi}{4}+k\pi\)