Phân tích đa thức thành nhân tử
ax2 - ax + bx2 -bx + a + b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+2x2+1=(x2+1)2
b)=3x2(a+b)+x(a+b)+5(a+b)=(a+b)(3x2+x+5)
c)=x2(a-b)-2x(a-b)-3(a-b)=(a-b)(x2-2x-3)=(a-b)(x-3)(x+1)
d)=2x(y2-a2)-5by(y+a)=(y+a)(2xy-2xa-5by)
\(\text{a) x}^4+2x^2+1=\left(x^2+1\right)^2\)
\(\text{b) 3}ax^2+3bx^2+ãx+bx+5a+5b=\left(3ax^2+3bx^2\right) +\left(ax+bx\right)+\left(5a+5b\right)=3x^2+x\left(a+b\right)+5\left(a+b\right)=\left(a+b\right)\left(3x^2+x+5\right)\)
\(\text{c) a}x^2-bx^2-2ax+2bx-3a+3b=\left(\text{a}x^2-bx^2\right)-\left(2ax-2bx\right)-\left(3a-3b\right)=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)=\left(x^2-2x-3\right)\left(a-b\right)\)
ax2+cx2-ay+ay2-cy+cy2
= x2(a+c)-y(a+c)+y2(a+c)
= (a+c)(x2-y+y2)
= (ax+a-ay) + (by-bx-b)
= a nhân ( x+1-y) + b nhân ( y-x-1 )
= a nhân ( x+1-y) - b nhân ( x+1-y )
= (x+1-y) nhân (a-b)
Bài 2 : Phân tích các đa thức sau thành nhân tử :
a) x2 - ( m + n )x + mn
b) ax + by + a - bx - ay - b
\(a,=x^2-mx-nx+mn=x\left(x-m\right)-n\left(x-m\right)=\left(x-n\right)\left(x-m\right)\\ b,=a\left(x-y\right)-b\left(x-y\right)+\left(a-b\right)\\ =\left(x-y\right)\left(a-b\right)+\left(a-b\right)=\left(a-b\right)\left(x-y+1\right)\)
b: \(=a\left(x-y\right)-b\left(x-y\right)+a-b\)
\(=\left(x-y+1\right)\left(a-b\right)\)
\(ax^2+bx^2-bx-ax+cx^2-cx\)
\(=\left(ax^2-ax\right)+\left(bx^2-bx\right)+\left(cx^2-cx\right)\)
\(=ax\left(x-1\right)+bx\left(x-1\right)+cx\left(x-1\right)\)
\(=\left(x-1\right)\left(ax+bx+cx\right)\)
\(=x\left(x-1\right)\left(a+b+c\right)\)
ax2+bx2-bx-ax+cx2-cx
= (ax2 - ax ) + (bx2 -bx ) + ( cx2 - cx )
= a(x) + b(x) + c(x)
= (x)(a+b+c)
a) x2y+xy+x+1= (x2y+xy)+(x+1)=xy(x+10+(x+1)=(x+1)(xy+1)
b) x2-(a+b)x+ab=x2-ax-bx+ab=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)
c) ax2+ay-bx2-by=(ax2+ay)-(bx2+by)=a(x2+y)-b(x2+y)=(a-b)(x2+y)
d) ax-2x-a2+2a=(ax-2x)-(a2-2a)=x(a-2)-a(a-2)=(a-2)(x-a)
e) 2x2+4ax+x+2a=(2x2+4ax)+(x+2a)=2x(x+2a)+(x+2a)=(x+2a)(2x+1)
f) x3+ax2+x+a=(x3+ax2)+(x+a)=x2(x+a)+(x+a)=(x2+1)(x+a)
a ) xy + 1 - x - y
= x ( y - 1 ) + 1 - y
= x ( y - 1 ) - ( y - 1 )
= ( x - 1 ) ( y - 1 )
b ) x2 + ab + ac + bx
= ( b + x )x + a( b + c )
= ( b + x )1x + 1a( b + c )
= ( b + x ) ( x + a ) ( b + c )
c ) ax + bx - cx + a + b - c
= ( a + b - c )x + a + b - c
= ( a + b - c )x + ( a + b - c )1
= ( a + b - c ) ( x + 1 )
\(=x\left(a-b\right)-\left(a^2-2ab+b^2\right)=\)
\(=\left(a-b\right)x-\left(a-b\right)^2=\)
\(=\left(a-b\right)\left[x-\left(a-b\right)\right]=\left(a-b\right)\left(x-a+b\right)\)
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right)\left(x+c\right)\)
\(=x^3+cx^2+bx^2+bcx+ax^2+acx+abx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right)x+abc\)
Đồnh nhất đa thức trên với đa thức \(x^3+ax^2+bx+c\),ta đc hệ điều kiện:
\(\hept{\begin{cases}a+b+c=a\left(1\right)\\ab+ac+bc=b\left(2\right)\\abc=c\left(3\right)\end{cases}}\)
Từ \(\left(1\right)a+b+c=a=>b+c=0=>c=-b\)
Thay vào (2),ta đc: \(ab+a.\left(-b\right)+b.\left(-b\right)=b=>ab-ab-b^2=b=>-b^2=b\)
\(=>b^2+b=0=>b\left(b+1\right)=0=>\orbr{\begin{cases}b=0\\b=-1\end{cases}}\)
+b=0 thì từ (1) suy ra c=0 ; a tùy ý
+b=-1 thì từ (1) suy ra c=1
Mà theo (3)\(abc=c=>a=\frac{c}{bc}=\frac{1}{-1}=-1\)
Vậy a=-1 hoặc a tùy ý ;b=0 hoặc b=-1;c=0 hoặc c=1
ax2 - ax + bx2 -bx + a + b
= (ax2+ bx2 ) - (ax + bx) + (a + b)
=x2 (a + b) - x(a + b) + (a + b)
= (x2 - x + 1)(a + b)
ax2 - ax + bx2 - bx + a + b
= ( ax2 + bx2 ) - ( ax + bx ) + ( a + b )
= x2( a + b ) - x( a + b ) + ( a + b )
= ( a + b )( x2 - x + 1 )