Giải pt
\(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$
PT $\Leftrightarrow x^2+5x+1=x+1$
$\Leftrightarrow x^2+4x=0$
$\Leftrightarrow x(x+4)=0$
$\Rightarrow x=0$ hoặc $x=-4$
Kết hợp đkxđ suy ra $x=0$
2. ĐKXĐ: $x\leq 2$
PT $\Leftrightarrow x^2+2x+4=2-x$
$\Leftrightarrow x^2+3x+2=0$
$\Leftrightarrow (x+1)(x+2)=0$
$\Leftrightarrow x+1=0$ hoặc $x+2=0$
$\Leftrightarrow x=-1$ hoặc $x=-2$
3.
ĐKXĐ: $-2\leq x\leq 2$
PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$
$\Leftrightarrow 2x+4=2-x$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\4-x>=0\end{matrix}\right.\)
=>2<=x<=4
\(\sqrt{x-2}-\sqrt{4-x}=2x^2-5x-3\)
=>\(\sqrt{x-2}-1+1-\sqrt{4-x}=2x^2-6x+x-3\)
=>\(\dfrac{x-2-1}{\sqrt{x-2}+1}+\dfrac{1-4+x}{1+\sqrt{4-x}}=\left(x-3\right)\left(2x+1\right)\)
=>\(\left(x-3\right)\left(\dfrac{1}{\sqrt{x-2}+1}+\dfrac{1}{1+\sqrt{4-x}}-2x-1\right)=0\)
=>x-3=0
=>x=3(nhận)
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
\(ĐK:\left\{{}\begin{matrix}x\le\dfrac{1}{2};4\le x\\\dfrac{1}{2}\le x\\x\le-11;\dfrac{1}{2}\le x\end{matrix}\right.\Leftrightarrow x\le-11;4\le x\)
\(PT\Leftrightarrow\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}-\sqrt{\left(2x-1\right)\left(x+11\right)}=0\\ \Leftrightarrow\sqrt{2x-1}\left(\sqrt{x-4}-\sqrt{x+11}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\sqrt{x-4}-\sqrt{x+11}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x-4+x+11-2\sqrt{x^2+7x-44}=9\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{x^2+7x-44}=2x-2\\ \Leftrightarrow\sqrt{x^2+7x-44}=x-1\\ \Leftrightarrow x^2+7x-44=x^2-2x+1\\ \Leftrightarrow9x=45\Leftrightarrow x=5\left(tm\right)\)
Vậy \(S=\left\{\dfrac{1}{2};5\right\}\)
Quên mất mình đánh nhầm.
ĐKXĐ: \(x\ge-\frac{1}{2}\).
PT đã cho tương đương với:
\(\left(\sqrt{2x+1}-3\right)-\left(\sqrt[3]{x+4}-2\right)=2x^2-5x-12\)
\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}-\frac{x-4}{\left(\sqrt[3]{x+4}\right)^2+2\sqrt[3]{x+4}+4}=\left(x-4\right)\left(2x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\Leftrightarrow x=4\\\frac{2}{\sqrt{2x+1}+3}-\frac{1}{\left(\sqrt[3]{x+4}\right)^2+2\sqrt[3]{x+4}+4}=2x+3\left(1\right)\end{matrix}\right.\).
Với \(x\ge-\frac{1}{2}\) ta có: \(VT_{\left(1\right)}\le\frac{2}{3};VP\ge2\).
Do đó (1) vô nghiệm.
Vậy phương trình có nghiệm duy nhất: x = 4.
ĐKXĐ: \(x\ge-\frac{1}{2}\).
PT đã cho tương đương với:
\(\left(\sqrt{2x+1}-3\right)-\left(\sqrt[3]{x+4}-2\right)=2x^2-5x-12\)
\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}-\frac{x-4}{\left(\sqrt[3]{x+4}\right)^2+2\sqrt[3]{x+4}+4}=\left(x-4\right)\left(2x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\\frac{1}{\sqrt{2x+1}+3}-\frac{1}{\left(\sqrt[3]{x+4}\right)^2+2\sqrt[3]{x+4}+4}=2x+3\left(1\right)\end{matrix}\right.\).
Với \(x\ge-\frac{1}{2}\) ta có: \(VT_{\left(1\right)}\le\frac{1}{3};VP_{\left(1\right)}\ge2\).
Do đó (1) vô nghiệm.
Vậy x = 4 là nghiệm duy nhất của phương trình.