\(a = \sqrt[3]{3 + \sqrt[3]{3}} + \sqrt[3]{3 - \sqrt[3]{3}} \)
\(b= 2\sqrt[3]{3}\)
CMR: a<b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: căn 6+2căn 5-căn 5
\(a=\dfrac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}=\dfrac{2}{1}=2\)
b: \(a^3=2-\sqrt{3}+2+\sqrt{3}+3a\)
=>a^3-3a-4=0
=>a^3-3a=4
\(\dfrac{64}{\left(a^2-3\right)^3}-3a=\left(\dfrac{4}{a^2-3}\right)^3-3a\)
\(=\left(\dfrac{a^3-3a}{a^2-3}\right)^3-3a=a^3-3a\)
=4
Đặt vế trái là T, ta có:
\(\dfrac{a}{\sqrt{b+1}}=\dfrac{a\sqrt{2}}{\sqrt{2}.\sqrt{b+1}}\ge\dfrac{a\sqrt{2}}{\dfrac{b+1+2}{2}}=\dfrac{a.2\sqrt{2}}{b+3}\)
Tương tự: \(\dfrac{b}{\sqrt{c+1}}\ge\dfrac{b.2\sqrt{2}}{c+3}\)
\(\dfrac{c}{\sqrt{a+1}}\ge\dfrac{c.2\sqrt{2}}{a+3}\)
Cộng vế theo vế các BĐT vừa chứng minh, ta được
\(T\ge2\sqrt{2}\left(\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{a+3}\right)=2\sqrt{2}\left(\dfrac{a^2}{ab+3a}+\dfrac{b^2}{bc+3b}+\dfrac{c^2}{ac+3c}\right)\)
\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+3\left(a+b+c\right)}\)
\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{\dfrac{\left(a+b+c\right)^2}{3}+3\left(a+b+c\right)}\)
\(T\ge2\sqrt{2}.\dfrac{3^2}{\dfrac{3^2}{3}+9}=\dfrac{3\sqrt{2}}{2}\)(đpcm)
Đẳng thức xảy ra khi a=b=c=1
b) Đặt vế trái là N,ta có:
\(\sum\sqrt{\dfrac{a^3}{b+3}}=\sum\sqrt{\dfrac{a^4}{ab+3}}=\sum\dfrac{a^2}{\sqrt{ab+3}}=\sum\dfrac{2a^2}{\sqrt{4a\left(b+3\right)}}\ge\sum\dfrac{2a^2}{\dfrac{4a+b+3}{2}}=\sum\dfrac{4a^2}{4a+b+3}\)
\(\sum\dfrac{4a^2}{4a+b+3}\ge\dfrac{\left(2a+2b+2c\right)^2}{4a+b+3+4b+c+3+4c+a+3}=\dfrac{3}{2}\)(đpcm)
Đẳng thức xảy ra khi a=b=c=1
Do a, b, c là 3 cạnh của tam giác ABC nên a, b, c đều dương. Do đó cả 2 vế đều dương.
Lập phương mỗi vế, ta được phương trình mới tương đương với phương trình đã cho:
\(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 8\cdot4=32\left(1\right)\)
Ta có \(\frac{a^3}{b^3+c^3}< \frac{2a^3}{a^3+b^3+c^3}\);\(\frac{b^3}{a^3+c^3}< \frac{2b^3}{a^3+b^3+c^3}\)và \(\frac{c^3}{a^3+b^3}< \frac{2c^3}{a^3+b^3+c^3}\)
Do đó \(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 2< 32\)
Vì vậy bất đẳng thức (1) là đúng, nên bất đẳng thức đã cho là đúng
Áp dụng BĐT phụ:
\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)
P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)
Xét M=\(\sum\dfrac{a}{3a+2b+c}\)
\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)
\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)
Mà
\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)
\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrow\)\(M\le\dfrac{1}{2}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)
Do vai trò của 3 biến là như nhau, ko mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow\) Theo BĐT Chebyshev:
\(3\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (1)
Bunhiacopxki:
\(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a^2+b^2+c^2\right)\left(a+b+c\right)\le6\left(a^3+b^3+c^3\right)\)
Nên ta chỉ cần chứng minh:
\(\left(a^3+b^3+c^3\right)^2\ge6\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3\ge6\)
Hiển nhiên đúng do: \(a^3+b^3+c^3\ge3abc=6\)