CMR ba + 8a chia hết cho 13 khi và chỉ khi abab chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3x-4y chia hết cho 13
=>3x-4y+12y chia hết cho 13
=>3x+(12y-4y) chia hết cho 13
=>3x+9y chia hết cho 13
=>3.(x+3y) chia hết cho 13
Mà (3,13)=1
=>x+3y chia hết cho 13
Vậy x+3y chia hết cho 13 <=> 3x-4y chia hết cho 13
Gọi số chục là a;chữ số hàng đơn vị là b(a,b thuộc N) khi đó số đã cho là P=10a+b
Tổng của số chục và 4 lần chữ số hàng đơn vị là Q=a+4b
Ta phải chứng minh:P chia hết cho 13\(\Leftrightarrow\)Q chia hết cho 13
Thật vậy: Nếu P chia hết cho 13 tức là:10a+b chia hết cho 13\(\Rightarrow\)9P chia hết cho 13(1)
Ta xét; 9P+Q=9(10a+b)+(a+4b)=90a+9b+a+4b
=91a+13b
Vì 91 chia hết cho 13 nên 91a chia hết cho 13
13 chia hết cho 13 nên 13a chia hết cho 13
\(\Rightarrow\)91a+13b chia hết cho 13
\(\Rightarrow\)9P+Q chia hết cho 13(2)
Từ (1) và (2)\(\Rightarrow\)Q chia hết cho 13
Mặt khác: Nếu Q chia hết cho 13
Xét 9P+Q=91a+13b chia hết cho 13
\(\Rightarrow\)9P chia hết cho 13
Vì(9;130=1 nên P chia hết cho 13
Vậy P chia hết cho 13\(\Leftrightarrow\)Q chia hết cho 13
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.
Gọi số tạo bởi 3 chữ số tận cùng là x, số hàng nghìn là y.
Khi đó số đó là:
1000y+x=1001y+(x-y)
Vì 1001y chia hết cho 7
=> số đó chia hết cho 7
<=> x-y chia hết cho 7
<=> số tạo bởi 3 chữ số tận cùng và số hàng nghìn chia hết cho 7.
Các phần khác tương tự
Ta có
\(\overline{ba}+8a=10.b+a+8a=9.a+10.b\)
Ta có
\(\overline{abab}=101.\overline{ab}=91.\overline{ab}+10.ab⋮13\)
Mà \(91.\overline{ab}=7.13.\overline{ab}⋮13\Rightarrow10.\overline{ab}⋮13\)
\(10.\overline{ab}=100.a+10.b=91.a+\left(9.a+10.b\right)⋮13\)
Mà \(91.a=7.13.a⋮13\Rightarrow9.a+10.b=\overline{ba}+8a⋮13\left(dpcm\right)\)