tìm x:
a) \(3^{x+1}=9^x\)
b) \(2^{3x+2}=4^{x+5}\)
c) \(3^{2x-1}=243\)
\(\text{nhanh lên}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{9x^2}=2x+1\\ \Leftrightarrow\left[{}\begin{matrix}3x=2x+1,\forall x\ge0\\-3x=2x+1,\forall x< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1,\forall x\ge0\left(N\right)\\x=-1,\forall x< 0\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-1,\forall x+3\ge0\\x+3=1-3x,\forall x+3< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2,\forall x\ge-3\left(N\right)\\x=-\dfrac{1}{2},\forall x< -3\left(L\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(c,\sqrt{x^2-2x+4}=2x-3\left(x\in R\right)\\ \Leftrightarrow x^2-2x+4=\left(2x-3\right)^2\\ \Leftrightarrow x^2-2x+4=4x^2-12x+9\\ \Leftrightarrow3x^2-10x+5=0\\ \Delta=100-4\cdot3\cdot5=40\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10-\sqrt{40}}{6}\\x=\dfrac{10+\sqrt{40}}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{10}}{3}\\x=\dfrac{5+\sqrt{10}}{3}\end{matrix}\right.\)
\(a.\sqrt{9x^2}=2x+1\)
<=> \(\sqrt{9}x=2x+1\)
<=> 3x = 2x + 1
<=> 3x - 2x = 1
<=> x = 1
a) \(\dfrac{-x}{4}=\dfrac{-9}{x}\)
\(\Rightarrow-x^2=-36\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy: \(x\in\left\{6;-6\right\}\)
b) \(\dfrac{5}{9}+\dfrac{x}{-1}=-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{9}+\dfrac{-9x}{9}=\dfrac{-3}{9}\)
\(\Rightarrow5-9x=-3\)
\(\Rightarrow-9x=-8\)
\(\Rightarrow x=\dfrac{8}{9}\)
Vậy: \(x=\dfrac{8}{9}\)
c) \(x:3\dfrac{1}{5}=1\dfrac{1}{2}\)
\(\Rightarrow x:\dfrac{16}{5}=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}.\dfrac{16}{5}\)
\(\Rightarrow x=\dfrac{24}{5}\)
Vậy: \(x=\dfrac{24}{5}\)
d) \(\dfrac{3x-1}{-5}=\dfrac{-5}{3x-1}\)
\(\Rightarrow\left(3x-1\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-\dfrac{4}{3}\right\}\)
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
a) \(\dfrac{1}{2}+\dfrac{2}{3}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{2}{3}x=-\dfrac{1}{4}\\ \Rightarrow x=-\dfrac{3}{8}\)
b) \(2\dfrac{2}{3}:x=1\dfrac{7}{9}:0,02\\ \Rightarrow2\dfrac{2}{3}:x=\dfrac{800}{9}\\ \Rightarrow x=\dfrac{3}{100}\)
c) \(x^x-x+1=1\\ \Rightarrow x^x-x=0\\ \Rightarrow x^x=x\\ \Rightarrow x=1\)
d) \(5-\left|3x-1\right|=3\\ \Rightarrow\left|3x-1\right|=2\\ \Rightarrow\left[{}\begin{matrix}3x-1=-2\\3x-1=2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
a/ \(3^{x+1}=9^x=3^{2x}\Rightarrow x+1=2x\Leftrightarrow x=1\)
b/ \(2^{3x+2}=4^{x+5}=2^{2x+10}\Rightarrow3x+2=2x+10\Leftrightarrow x=8\)
c/ \(3^{2x-1}=243=3^5\Rightarrow2x-1=5\Leftrightarrow x=3\)