Tính P=1+\(\frac{1}{2}\)+\(^{\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{65}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{4\left(\frac{1}{78}-\frac{1}{60}-\frac{1}{306}\right)}{9\left(\frac{1}{78}-\frac{1}{60}-\frac{1}{306}\right)}:\frac{1+\frac{2}{71}-\frac{5}{121}}{-13\left(1+\frac{2}{71}-\frac{5}{121}\right)}=\frac{4}{9}:-\frac{1}{13}\)
Đoán thôi
A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{65}}\)
\(\Rightarrow2P=2+1+\frac{1}{2}+...+\frac{1}{2^{64}}\)
\(\Rightarrow2P-P=2+1+\frac{1}{2}+...+\frac{1}{2^{64}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{65}}\)
\(P=2-\frac{1}{2^{65}}\)
Vậy \(P=2-\frac{1}{2^{65}}\).