K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

\(P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{65}}\)

\(\Rightarrow2P=2+1+\frac{1}{2}+...+\frac{1}{2^{64}}\)

\(\Rightarrow2P-P=2+1+\frac{1}{2}+...+\frac{1}{2^{64}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{65}}\)

\(P=2-\frac{1}{2^{65}}\)

Vậy \(P=2-\frac{1}{2^{65}}\).

11 tháng 9 2015

A = \(\frac{4\left(\frac{1}{78}-\frac{1}{60}-\frac{1}{306}\right)}{9\left(\frac{1}{78}-\frac{1}{60}-\frac{1}{306}\right)}:\frac{1+\frac{2}{71}-\frac{5}{121}}{-13\left(1+\frac{2}{71}-\frac{5}{121}\right)}=\frac{4}{9}:-\frac{1}{13}\)

Đoán thôi 

11 tháng 9 2015

Hồ Thu Giang: ừ, làm đi

12 tháng 8 2018

A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)

  \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)

  \(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)

  \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)

  \(=1-\frac{1}{13}=\frac{12}{13}\)

19 tháng 3 2019

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)

\(=1-\frac{1}{13}=\frac{12}{13}\)